CSIT | Cortical-to-Subcortical Information Transfer Underlying Skill Learning

Summary
The stability-plasticity dilemma is a critical constraint in brain networks underlying learning and memory. The dilemma is how the brain can acquire new information (plasticity) without overriding older knowledge (stability). This project aims to understand how the brain solves this dilemma by investigating the underlying circuits that allow for the transition from the initial exploration of a behavior to its long-term storage. One possibility is that distinct brain circuits drive exploration and storage. Alternatively, a shared circuit may mediate both abilities through the transfer of behaviorally relevant information across brain regions. To rigorously test these models, we need a method to measure behaviorally relevant information transfer, something that is not possible with current methods. In this project I propose to work with Dr. Panzeri, a leading expert in applying information theory to neuroscience, to develop such a method. We will apply this method to a dataset I collected during my PhD, consisting of high-resolution, high-channel count chronic multi-site in vivo electrophysiology in the rat during novel skill learning. This dataset contains simultaneously recorded activity from motor cortex and the basal ganglia, regions that have been implicated in the exploration and the storage of behaviors, respectively. The results of this project will shed light on a fundamental principle in the brain, while providing the broader field of systems neuroscience with an important tool that we will disseminate in an open source format for maximum impact. This project is an ideal progression from my PhD and will allow me to strengthen my skills in computational neuroscience, complementing my training in experimental neuroscience, and preparing me to lead an interdisciplinary lab that combines high-quality in vivo electrophysiology with cutting-edge computational methods to investigate how interactions across brain regions generate complex behaviors.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/895379
Start date: 01-01-2021
End date: 31-12-2021
Total budget - Public funding: 85 736,64 Euro - 85 736,00 Euro
Cordis data

Original description

The stability-plasticity dilemma is a critical constraint in brain networks underlying learning and memory. The dilemma is how the brain can acquire new information (plasticity) without overriding older knowledge (stability). This project aims to understand how the brain solves this dilemma by investigating the underlying circuits that allow for the transition from the initial exploration of a behavior to its long-term storage. One possibility is that distinct brain circuits drive exploration and storage. Alternatively, a shared circuit may mediate both abilities through the transfer of behaviorally relevant information across brain regions. To rigorously test these models, we need a method to measure behaviorally relevant information transfer, something that is not possible with current methods. In this project I propose to work with Dr. Panzeri, a leading expert in applying information theory to neuroscience, to develop such a method. We will apply this method to a dataset I collected during my PhD, consisting of high-resolution, high-channel count chronic multi-site in vivo electrophysiology in the rat during novel skill learning. This dataset contains simultaneously recorded activity from motor cortex and the basal ganglia, regions that have been implicated in the exploration and the storage of behaviors, respectively. The results of this project will shed light on a fundamental principle in the brain, while providing the broader field of systems neuroscience with an important tool that we will disseminate in an open source format for maximum impact. This project is an ideal progression from my PhD and will allow me to strengthen my skills in computational neuroscience, complementing my training in experimental neuroscience, and preparing me to lead an interdisciplinary lab that combines high-quality in vivo electrophysiology with cutting-edge computational methods to investigate how interactions across brain regions generate complex behaviors.

Status

CLOSED

Call topic

MSCA-IF-2019

Update Date

28-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.3. EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions (MSCA)
H2020-EU.1.3.2. Nurturing excellence by means of cross-border and cross-sector mobility
H2020-MSCA-IF-2019
MSCA-IF-2019