AccuCT | Accurate characterization of charge-transfer excited states

Summary
Charge transfer (CT) processes play an important role in photosensitizers and photocatalytic reactions that have found great potential in solar energy conversion and enviromental remediation. Density Functional Theory (DFT) is the archetype method to perform all kind of computational simulations due to its favorable combination of efficiency and accuracy. CT processes are among the most difficult challenges for DFT and currently a reliable, efficient and size-extensive method is missing. The goal of this project is developing a new family of long-range corrected density functionals for the quantitative description of CT excited states that also achieves better global performance of other properties. The current approach employs a physically sound strategy based on using density-related properties to construct attenuating functions, avoiding the undesirable biases produced by parameter fitting. By correcting CT description, the new functionals hold the promise to extend its applicability to a wider range of properties and pave the way towards the development of all-purpose functionals.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/660943
Start date: 04-01-2016
End date: 03-01-2019
Total budget - Public funding: 239 191,20 Euro - 239 191,00 Euro
Cordis data

Original description

Charge transfer (CT) processes play an important role in photosensitizers and photocatalytic reactions that have found great potential in solar energy conversion and enviromental remediation. Density Functional Theory (DFT) is the archetype method to perform all kind of computational simulations due to its favorable combination of efficiency and accuracy. CT processes are among the most difficult challenges for DFT and currently a reliable, efficient and size-extensive method is missing. The goal of this project is developing a new family of long-range corrected density functionals for the quantitative description of CT excited states that also achieves better global performance of other properties. The current approach employs a physically sound strategy based on using density-related properties to construct attenuating functions, avoiding the undesirable biases produced by parameter fitting. By correcting CT description, the new functionals hold the promise to extend its applicability to a wider range of properties and pave the way towards the development of all-purpose functionals.

Status

CLOSED

Call topic

MSCA-IF-2014-GF

Update Date

28-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.3. EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions (MSCA)
H2020-EU.1.3.2. Nurturing excellence by means of cross-border and cross-sector mobility
H2020-MSCA-IF-2014
MSCA-IF-2014-GF Marie Skłodowska-Curie Individual Fellowships (IF-GF)