NonEqbSK | Effective field theories for non-equilibrium many-body systems

Summary
Non-equilibrium phenomena continue to challenge our understanding of many-body systems appearing in nature. Macroscopic processes are generally irreversible due to dissipation. Reconciling this irreversibility with the unitarity of quantum mechanics has been one of the long-standing puzzles in physics. To date, we lack a systematic framework to account for stochastic thermal noise in many-body dynamics that becomes increasingly important as we leave equilibrium. The situation is particularly dire in systems that naturally operate far from equilibrium, such as fluids near a critical point, actively driven fluids, or fluids fluctuating in a confined volume, as the validity of existing models is limited.

The goal of this proposal is to investigate these systems in the context of the newly developed Schwinger-Keldysh framework for non-equilibrium effective field theories. The new framework offers a systematic understanding of thermal fluctuations and dissipation starting from an action principle, and is suitable for constructing models describing non-equilibrium phenomena in many-body systems. During this fellowship, I will develop effective field theories specialised to the non-equilibrium systems mentioned above, and investigate their repercussions for observed phenomena. These results will have far-reaching impact in the fields of high-energy physics and condensed matter physics, especially concerning the hunt for the QCD critical point at heavy-ion colliders, modelling of living systems in biophysics, and biophysical membranes. This work will also provide insights into the broader physical problems such as the emergence of dissipation from microscopic principles and the quantum nature of gravity via the AdS/CFT correspondence.

The increased visibility that I will gain in the scientific community due to these results, along with the training and experience I will obtain during this fellowship, will help me establish myself as an independent scientist in the future.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/101027527
Start date: 01-09-2021
End date: 31-08-2023
Total budget - Public funding: 175 572,48 Euro - 175 572,00 Euro
Cordis data

Original description

Non-equilibrium phenomena continue to challenge our understanding of many-body systems appearing in nature. Macroscopic processes are generally irreversible due to dissipation. Reconciling this irreversibility with the unitarity of quantum mechanics has been one of the long-standing puzzles in physics. To date, we lack a systematic framework to account for stochastic thermal noise in many-body dynamics that becomes increasingly important as we leave equilibrium. The situation is particularly dire in systems that naturally operate far from equilibrium, such as fluids near a critical point, actively driven fluids, or fluids fluctuating in a confined volume, as the validity of existing models is limited.

The goal of this proposal is to investigate these systems in the context of the newly developed Schwinger-Keldysh framework for non-equilibrium effective field theories. The new framework offers a systematic understanding of thermal fluctuations and dissipation starting from an action principle, and is suitable for constructing models describing non-equilibrium phenomena in many-body systems. During this fellowship, I will develop effective field theories specialised to the non-equilibrium systems mentioned above, and investigate their repercussions for observed phenomena. These results will have far-reaching impact in the fields of high-energy physics and condensed matter physics, especially concerning the hunt for the QCD critical point at heavy-ion colliders, modelling of living systems in biophysics, and biophysical membranes. This work will also provide insights into the broader physical problems such as the emergence of dissipation from microscopic principles and the quantum nature of gravity via the AdS/CFT correspondence.

The increased visibility that I will gain in the scientific community due to these results, along with the training and experience I will obtain during this fellowship, will help me establish myself as an independent scientist in the future.

Status

CLOSED

Call topic

MSCA-IF-2020

Update Date

28-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.3. EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions (MSCA)
H2020-EU.1.3.2. Nurturing excellence by means of cross-border and cross-sector mobility
H2020-MSCA-IF-2020
MSCA-IF-2020 Individual Fellowships