PerovskiteHTM | New Hole-Transport Materials to Enhance Perovskite Solar Cells

Summary
The extraordinary recent progress in lead-halide perovskite-based solar cells has largely been based on the properties and processing of the perovskite layer. Inevitably some cell performance limitations are now linked with other component materials, where progress is required to enable the full potential of the technology to be realised:
1. Poor charge mobility and/or high synthesis cost of current organic hole-transport materials (HTMs) incorporated into cells, limiting current collection and cost.
2. Poor moisture stability of the perovskite, limiting device lifetime.
3. Toxicity of Pb, that could preclude some application areas for the devices, or poorer light harvesting if Pb is replaced by Sn.
This proposal tackles all three of these points, through design, synthesis, characterisation, in-house testing and application of new organic hole-transport materials with enhanced properties. This builds upon materials previously developed in the host group, which have already shown excellent promise in perovskite cells.
Crucially, the project will provide a complementary experience for the Fellow that adds to his previous outstanding contributions during his PhD to the area of organic light-emitting diodes (OLEDs). His PhD experience in preparing emissive materials for these electricity-in-light-out OLEDs will now be extended to light-in-electricity-out solar cells. This will give the Fellow a superb overview of both fields such that he can use the synergies in materials development across the whole area as a springboard for his subsequent career.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/659237
Start date: 01-02-2016
End date: 31-01-2018
Total budget - Public funding: 195 454,80 Euro - 195 454,00 Euro
Cordis data

Original description

The extraordinary recent progress in lead-halide perovskite-based solar cells has largely been based on the properties and processing of the perovskite layer. Inevitably some cell performance limitations are now linked with other component materials, where progress is required to enable the full potential of the technology to be realised:
1. Poor charge mobility and/or high synthesis cost of current organic hole-transport materials (HTMs) incorporated into cells, limiting current collection and cost.
2. Poor moisture stability of the perovskite, limiting device lifetime.
3. Toxicity of Pb, that could preclude some application areas for the devices, or poorer light harvesting if Pb is replaced by Sn.
This proposal tackles all three of these points, through design, synthesis, characterisation, in-house testing and application of new organic hole-transport materials with enhanced properties. This builds upon materials previously developed in the host group, which have already shown excellent promise in perovskite cells.
Crucially, the project will provide a complementary experience for the Fellow that adds to his previous outstanding contributions during his PhD to the area of organic light-emitting diodes (OLEDs). His PhD experience in preparing emissive materials for these electricity-in-light-out OLEDs will now be extended to light-in-electricity-out solar cells. This will give the Fellow a superb overview of both fields such that he can use the synergies in materials development across the whole area as a springboard for his subsequent career.

Status

CLOSED

Call topic

MSCA-IF-2014-EF

Update Date

28-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.3. EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions (MSCA)
H2020-EU.1.3.2. Nurturing excellence by means of cross-border and cross-sector mobility
H2020-MSCA-IF-2014
MSCA-IF-2014-EF Marie Skłodowska-Curie Individual Fellowships (IF-EF)