Light UP | Visible Light Ultrafast Photodetector for Optical Wireless Communication Technology

Summary
From beacon fires in early civilizations to emerging light networked wireless communication in modern society, optical wireless communication technologies (OWC) continues to play a pivotal role for mankind. The emergence of flexible and wearable electronic applications are now posing novel challenges to OWC whereby clothes, mechanically flexible design materials and even the human skin are increasingly being considered as possible supports for multifunctional applications.
Light UP has the ambition to transform the scenario of wearable OWC by developing a conceptually new class of ultrathin and flexible photodetectors with an expected time response as fast as a few tens of picoseconds, greatly surpassing any rivalling present wearable technology. The groundbreaking innovation that will enable this breakthrough will be based on the realization of a so-called “wide quantum well” in high quality atomically thin materials in which the ultrafast formation of a charge dipole upon light absorption will lead to a fast on/off optical modulation of the electrical signal in transistor geometries. Atomically thin materials will be engineered ad hoc by exploiting surface chemistry to heal defect and to exert a superior control over their energy band structure in order to obtain well-suited electronic, optical, and physical properties.
This ambitious interdisciplinary exploration will thrive on the unique synergy of the complementary expertise and skills by the applicant and host group encompassing nano-chemistry, material science, engineering and physics. Hence, this project will address a forefront research program pioneering (1) the development of a scalable solution-phase scheme for chemical engineering of defect states in atomically thin semiconductors; (2) the implementation of defect-free atomically thin semiconductors in ultrafast photodetector; and (3) the realization of atomically thin ultrafast photodetectors onto technological relevant flexible substrates.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/843136
Start date: 01-03-2020
End date: 28-02-2022
Total budget - Public funding: 212 933,76 Euro - 212 933,00 Euro
Cordis data

Original description

From beacon fires in early civilizations to emerging light networked wireless communication in modern society, optical wireless communication technologies (OWC) continues to play a pivotal role for mankind. The emergence of flexible and wearable electronic applications are now posing novel challenges to OWC whereby clothes, mechanically flexible design materials and even the human skin are increasingly being considered as possible supports for multifunctional applications.
Light UP has the ambition to transform the scenario of wearable OWC by developing a conceptually new class of ultrathin and flexible photodetectors with an expected time response as fast as a few tens of picoseconds, greatly surpassing any rivalling present wearable technology. The groundbreaking innovation that will enable this breakthrough will be based on the realization of a so-called “wide quantum well” in high quality atomically thin materials in which the ultrafast formation of a charge dipole upon light absorption will lead to a fast on/off optical modulation of the electrical signal in transistor geometries. Atomically thin materials will be engineered ad hoc by exploiting surface chemistry to heal defect and to exert a superior control over their energy band structure in order to obtain well-suited electronic, optical, and physical properties.
This ambitious interdisciplinary exploration will thrive on the unique synergy of the complementary expertise and skills by the applicant and host group encompassing nano-chemistry, material science, engineering and physics. Hence, this project will address a forefront research program pioneering (1) the development of a scalable solution-phase scheme for chemical engineering of defect states in atomically thin semiconductors; (2) the implementation of defect-free atomically thin semiconductors in ultrafast photodetector; and (3) the realization of atomically thin ultrafast photodetectors onto technological relevant flexible substrates.

Status

CLOSED

Call topic

MSCA-IF-2018

Update Date

28-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.3. EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions (MSCA)
H2020-EU.1.3.2. Nurturing excellence by means of cross-border and cross-sector mobility
H2020-MSCA-IF-2018
MSCA-IF-2018