ExoSensor | A Nano-photoelectric Exosome Biosensor for Point-of-care Diagnosis of Early-stage Cancer

Summary
Tumour-derived circulating exosomes are an ideal, easily accessible reservoir of cancer biomarkers to assess disease processes. Quantitatively pinpointing exosome tumour markers, a clinical field of an unmet need is appealing, yet challenging. The main objectives of the proposal are to develop an integrated dual-signalling exosome biosensor (ExoSensor) for rapid and specific detection of GPC1+ exosomes and fabricate a 3D-printed portable prototype for POCT diagnosis of pancreatic cancer, offering an universal technology for clinical cancer diagnosis through quantitatively monitoring the protein marker of cancer-derived exosomes, in a simple way. The novelty resides in creatively achieving accurate, sensitive, and simultaneous detection of exosomes by integrating two synergetic methods (optical and electrochemical) on one single nanosensing platform, avoiding false positive/negative results to the utmost and ensuring the reliability of tests. This European Fellowship at Kings College London will provide the researcher with advanced technical training in molecular biology, exosome, cancer cell and animal handling, analytical chemistry and microscopy and imaging techniques, as well as academic mentoring in research management. A secondment to Cardiff University will seek and confirm the best possible biomarker(s). Another secondment to the industrial partner AstraZeneca Ltd will offer access to various exosomes research (diagnostics, toxicology and therapeutics) and evaluate the feasibility of commercial transfer if possible. Guy’s, St Thomas, and King’s College Hospital (part of King’s Health Partners) will provide valuable clinical samples for final validation stage. Other collaborators will advise on 3D-printing, pancreatic cancer and biomarkers. These interdisplinary contributions are essential and well-related to the proposal research, fostering high-quality cooperation from biology, chemistry, engineering, nanotechnology and clinical areas the other way round.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/749087
Start date: 11-10-2017
End date: 10-10-2019
Total budget - Public funding: 183 454,80 Euro - 183 454,00 Euro
Cordis data

Original description

Tumour-derived circulating exosomes are an ideal, easily accessible reservoir of cancer biomarkers to assess disease processes. Quantitatively pinpointing exosome tumour markers, a clinical field of an unmet need is appealing, yet challenging. The main objectives of the proposal are to develop an integrated dual-signalling exosome biosensor (ExoSensor) for rapid and specific detection of GPC1+ exosomes and fabricate a 3D-printed portable prototype for POCT diagnosis of pancreatic cancer, offering an universal technology for clinical cancer diagnosis through quantitatively monitoring the protein marker of cancer-derived exosomes, in a simple way. The novelty resides in creatively achieving accurate, sensitive, and simultaneous detection of exosomes by integrating two synergetic methods (optical and electrochemical) on one single nanosensing platform, avoiding false positive/negative results to the utmost and ensuring the reliability of tests. This European Fellowship at Kings College London will provide the researcher with advanced technical training in molecular biology, exosome, cancer cell and animal handling, analytical chemistry and microscopy and imaging techniques, as well as academic mentoring in research management. A secondment to Cardiff University will seek and confirm the best possible biomarker(s). Another secondment to the industrial partner AstraZeneca Ltd will offer access to various exosomes research (diagnostics, toxicology and therapeutics) and evaluate the feasibility of commercial transfer if possible. Guy’s, St Thomas, and King’s College Hospital (part of King’s Health Partners) will provide valuable clinical samples for final validation stage. Other collaborators will advise on 3D-printing, pancreatic cancer and biomarkers. These interdisplinary contributions are essential and well-related to the proposal research, fostering high-quality cooperation from biology, chemistry, engineering, nanotechnology and clinical areas the other way round.

Status

CLOSED

Call topic

MSCA-IF-2016

Update Date

28-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.3. EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions (MSCA)
H2020-EU.1.3.2. Nurturing excellence by means of cross-border and cross-sector mobility
H2020-MSCA-IF-2016
MSCA-IF-2016