AIE-RTP-PLED | A general method for developing high-efficiency organic light-emitting diodes based on AIE-active room-temperature phosphorescent polymers

Summary
Organic light-emitting diodes (OLEDs) as displays and luminaires have generated enormous attention because of their unique advantages compared to other lighting and display technologies. These include the capacity to fabricate ultra-thin, flexible and transparent devices that additionally have a much lower power consumption. Limited by the electron spin statistics, the maximum internal quantum efficiency (IQE) of conventional fluorescent OLEDs is only 25%. In contrast, thermally activated delayed fluorescence (TADF) can theoretically realize 100% IQE by recruiting triplet excitons and converting them into singlet excitons via reverse intersystem crossing. Most TADF materials must be doped into a rigid host matrix in order to suppress aggregation-caused quenching (ACQ) and other nonradiative processes. An alternative mechanism where 100% IQE can be realized is room temperature phosphorescence (RTP). This proposal targets the development of polymers that are both RTP and show aggregation induced emission (AIE). This permits these materials to be used as high-efficiency emitters in low-cost solution-processed OLEDs. Due to the synergistic effect of AIE, RTP, and polymer, high-efficiency RTP materials can be developed in the amorphous state, a previously undocumented advance in materials development. Through this research proposal, a general road map for simple and high-efficiency PLEDs will be constructed based on AIE-RTP polymers.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/897098
Start date: 12-10-2020
End date: 11-10-2022
Total budget - Public funding: 212 933,76 Euro - 212 933,00 Euro
Cordis data

Original description

Organic light-emitting diodes (OLEDs) as displays and luminaires have generated enormous attention because of their unique advantages compared to other lighting and display technologies. These include the capacity to fabricate ultra-thin, flexible and transparent devices that additionally have a much lower power consumption. Limited by the electron spin statistics, the maximum internal quantum efficiency (IQE) of conventional fluorescent OLEDs is only 25%. In contrast, thermally activated delayed fluorescence (TADF) can theoretically realize 100% IQE by recruiting triplet excitons and converting them into singlet excitons via reverse intersystem crossing. Most TADF materials must be doped into a rigid host matrix in order to suppress aggregation-caused quenching (ACQ) and other nonradiative processes. An alternative mechanism where 100% IQE can be realized is room temperature phosphorescence (RTP). This proposal targets the development of polymers that are both RTP and show aggregation induced emission (AIE). This permits these materials to be used as high-efficiency emitters in low-cost solution-processed OLEDs. Due to the synergistic effect of AIE, RTP, and polymer, high-efficiency RTP materials can be developed in the amorphous state, a previously undocumented advance in materials development. Through this research proposal, a general road map for simple and high-efficiency PLEDs will be constructed based on AIE-RTP polymers.

Status

CLOSED

Call topic

MSCA-IF-2019

Update Date

28-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.3. EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions (MSCA)
H2020-EU.1.3.2. Nurturing excellence by means of cross-border and cross-sector mobility
H2020-MSCA-IF-2019
MSCA-IF-2019