SocialBrain | Brain growth under social pressure: mathematical modelling of brain growth when individuals face social challenges

Summary
Growing and maintaining a large brain entails substantial energetic costs. A large brain can evolve if costs are compensated by benefits from associated cognitive abilities. Leading hypotheses for brain evolution consider benefits arising from the solution of ecological and social problems. However, progress has been hindered by the unavailability of mathematical theory generating testable hypotheses from known causes.

I will develop testable mathematical models that yield quantitative predictions for brain mass through ontogeny when individuals evolve under social pressures. The goal is to assess the relative role of the social and ecological hypotheses in brain evolution, particularly in humans. I will formulate the models using elements of metabolic theory and life history theory, and the analysis will require methods from optimal control and differential game theory.

This is a strongly interdisciplinary research project, and I will ensure its success by working with leaders in the respective fields of social evolution theory (Dr Andy Gardner, St Andrews), cognition (the world-class multi-departmental team at St Andrews), and differential game theory (Prof Maurizio Falcone, Sapienza). This work thus brings together a diversity of state-of-the-art elements and proposes an innovative, challenging, and important project, to produce a novel and readily usable tool to study brain evolution.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/701464
Start date: 01-10-2016
End date: 15-10-2018
Total budget - Public funding: 195 454,80 Euro - 195 454,00 Euro
Cordis data

Original description

Growing and maintaining a large brain entails substantial energetic costs. A large brain can evolve if costs are compensated by benefits from associated cognitive abilities. Leading hypotheses for brain evolution consider benefits arising from the solution of ecological and social problems. However, progress has been hindered by the unavailability of mathematical theory generating testable hypotheses from known causes.

I will develop testable mathematical models that yield quantitative predictions for brain mass through ontogeny when individuals evolve under social pressures. The goal is to assess the relative role of the social and ecological hypotheses in brain evolution, particularly in humans. I will formulate the models using elements of metabolic theory and life history theory, and the analysis will require methods from optimal control and differential game theory.

This is a strongly interdisciplinary research project, and I will ensure its success by working with leaders in the respective fields of social evolution theory (Dr Andy Gardner, St Andrews), cognition (the world-class multi-departmental team at St Andrews), and differential game theory (Prof Maurizio Falcone, Sapienza). This work thus brings together a diversity of state-of-the-art elements and proposes an innovative, challenging, and important project, to produce a novel and readily usable tool to study brain evolution.

Status

CLOSED

Call topic

MSCA-IF-2015-EF

Update Date

28-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.3. EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions (MSCA)
H2020-EU.1.3.2. Nurturing excellence by means of cross-border and cross-sector mobility
H2020-MSCA-IF-2015
MSCA-IF-2015-EF Marie Skłodowska-Curie Individual Fellowships (IF-EF)