MAIDEN-SPRUCE | Tree growth, forest carbon storage and climate change in a Canadian boreal region using a model-data fusion approach

Summary
The boreal forest is one of the most important global carbon sinks but its carbon fluxes and total amount of sequestered carbon depend on the regional climate variability. Because of this sensitivity to climate, boreal trees are also important natural archives of current and past climate change. During this project, we will use a data-model approach to improve our understanding of the links between forests and climate in a Canadian boreal region over the last millennium. More specifically, we will adapt the process-based ecophysiological model MAIDENiso to investigate factors influencing the growth and underlying biogeochemical processes of black spruce (Picea mariana (Mill.) B.S.P.), the most representative species of the North American boreal biome. This will give an insight into carbon storage in the taiga and will provide the first multiproxy (ring widths and δ18O and δ13C in tree-ring cellulose) regional climate reconstruction in Eastern North America over the last millennium. MAIDENiso will be calibrated on a recently developed network of tree-ring data from the taiga of Quebec. This project will have important implications. First, we will get information on the capacity of black spruce forests to adapt to climate change and to act as carbon sink using an innovative approach that can be transferred to study European boreal ecosystems as well. Second, we will reduce the uncertainties on the estimates of the climate variability of the last millennium in a region that has historically been under-represented in the Northern Hemisphere network of climate reconstructions (see IPCC AR5). Finally, we will be able to analyze the impact of each climate forcing (volcanism, solar activity, CO2 concentration) on the regional climate and carbon sink variability. An important aspect of this project is its multidisciplinarity. Climatology, geochemistry, dendrochronology, tree physiology and numerical modelling will be used linking together European and Canadian scientists.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/656896
Start date: 01-10-2015
End date: 30-09-2017
Total budget - Public funding: 173 076,00 Euro - 173 076,00 Euro
Cordis data

Original description

The boreal forest is one of the most important global carbon sinks but its carbon fluxes and total amount of sequestered carbon depend on the regional climate variability. Because of this sensitivity to climate, boreal trees are also important natural archives of current and past climate change. During this project, we will use a data-model approach to improve our understanding of the links between forests and climate in a Canadian boreal region over the last millennium. More specifically, we will adapt the process-based ecophysiological model MAIDENiso to investigate factors influencing the growth and underlying biogeochemical processes of black spruce (Picea mariana (Mill.) B.S.P.), the most representative species of the North American boreal biome. This will give an insight into carbon storage in the taiga and will provide the first multiproxy (ring widths and δ18O and δ13C in tree-ring cellulose) regional climate reconstruction in Eastern North America over the last millennium. MAIDENiso will be calibrated on a recently developed network of tree-ring data from the taiga of Quebec. This project will have important implications. First, we will get information on the capacity of black spruce forests to adapt to climate change and to act as carbon sink using an innovative approach that can be transferred to study European boreal ecosystems as well. Second, we will reduce the uncertainties on the estimates of the climate variability of the last millennium in a region that has historically been under-represented in the Northern Hemisphere network of climate reconstructions (see IPCC AR5). Finally, we will be able to analyze the impact of each climate forcing (volcanism, solar activity, CO2 concentration) on the regional climate and carbon sink variability. An important aspect of this project is its multidisciplinarity. Climatology, geochemistry, dendrochronology, tree physiology and numerical modelling will be used linking together European and Canadian scientists.

Status

CLOSED

Call topic

MSCA-IF-2014-EF

Update Date

28-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.3. EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions (MSCA)
H2020-EU.1.3.2. Nurturing excellence by means of cross-border and cross-sector mobility
H2020-MSCA-IF-2014
MSCA-IF-2014-EF Marie Skłodowska-Curie Individual Fellowships (IF-EF)