PAINTING | Power and Information Integration Technologies in Microgrids

Summary
This project aims at training a talented researcher, Dr Ruichi Wang by an interdisciplinary international research program which is focused on developing advanced power and information integration technologies (PAINT) for microgrids. PAINT is urgently demanded from industry and scientific research for the better use of green power. The Fellow will be trained on a series of theories and technical skills related to advanced power electronics, communication and microgrids control at the main host Loughborough University and a number of EU hosts including the University of Strathclyde, TU Delft and the University of Malaga. Capitalizing upon her original power and communication interdisciplinary background and expertise in integrated communication, the Fellow will make her a unique asset to the EU for developing novel PAINT for sustainable energy system. As demonstrated in her CV, Dr. Wang has proven track record in integrated communication with interdisciplinary background and her achievement has been outstanding though very young. The skills and technologies she will grasp during this Fellowship will allow her to diversify her capability significantly, including power electronics modelling, power/data integrated modulation/demodulation, distributed impedance analysis and microgrids control. Besides, the Fellowship will allow her to transfer the knowledge she gains through the research to the benefit of her hosts and regional industrial liaisons together with her existing knowledge on integrated communication. Starting from power electronics modelling with high frequency small signal injected through power conversion process, this project will develop a novel PAINT to achieve integrated communication at converter control layer and distributed power tracing for energy management in microgrids. Fostered by the Fellowship, a leading expert in power/information integration technologies is expected and will contribute greatly to EU industries and academic communities.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/898194
Start date: 01-02-2021
End date: 31-01-2023
Total budget - Public funding: 212 933,76 Euro - 212 933,00 Euro
Cordis data

Original description

This project aims at training a talented researcher, Dr Ruichi Wang by an interdisciplinary international research program which is focused on developing advanced power and information integration technologies (PAINT) for microgrids. PAINT is urgently demanded from industry and scientific research for the better use of green power. The Fellow will be trained on a series of theories and technical skills related to advanced power electronics, communication and microgrids control at the main host Loughborough University and a number of EU hosts including the University of Strathclyde, TU Delft and the University of Malaga. Capitalizing upon her original power and communication interdisciplinary background and expertise in integrated communication, the Fellow will make her a unique asset to the EU for developing novel PAINT for sustainable energy system. As demonstrated in her CV, Dr. Wang has proven track record in integrated communication with interdisciplinary background and her achievement has been outstanding though very young. The skills and technologies she will grasp during this Fellowship will allow her to diversify her capability significantly, including power electronics modelling, power/data integrated modulation/demodulation, distributed impedance analysis and microgrids control. Besides, the Fellowship will allow her to transfer the knowledge she gains through the research to the benefit of her hosts and regional industrial liaisons together with her existing knowledge on integrated communication. Starting from power electronics modelling with high frequency small signal injected through power conversion process, this project will develop a novel PAINT to achieve integrated communication at converter control layer and distributed power tracing for energy management in microgrids. Fostered by the Fellowship, a leading expert in power/information integration technologies is expected and will contribute greatly to EU industries and academic communities.

Status

CLOSED

Call topic

MSCA-IF-2019

Update Date

28-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.3. EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions (MSCA)
H2020-EU.1.3.2. Nurturing excellence by means of cross-border and cross-sector mobility
H2020-MSCA-IF-2019
MSCA-IF-2019