OptiCarb | Optimising hard carbon anodes for efficient energy storage in sodium-ion batteries

Summary
OptiCarb overall aim is to understand the fundamental mechanisms of sodium-ion intercalation/adsorption in hard carbon anodes and find the optimum carbon atomic configuration that maximises the sodium storage capacity. Experimentally it is difficult to unravel the mechanistic nature of sodium-carbon interactions, due to the complex atomic structure of hard carbons. Therefore, theoretical studies based on molecular simulations are crucial, as they can achieve atomistic resolution. However, up to date there is no realistic model capturing the microstructural complexity of hard carbons available in the literature, which hinders the subsequent study of the sodium-hard carbon interface. In this computational project I will use molecular dynamics simulations and an innovative methodology to generate realistic models of hard carbon anodes that capture porous and pseudo-graphitic domains into a single 3D-connected nanostructure. Our models will allow us to systematically study Na intercalation between pseudo-graphitic layers and Na adsorption in the confined space of carbon pores, which are key to optimise the Na storage capacity. To ensure maximum impact of the gained knowledge from our theoretical studies, I will closely work with experimentalists in my host group to validate and correlate our models with experimental data and guide the experimental design of optimised anodes with high Coulombic efficiency and high capacity. This will push the performance of Na-ion batteries to active long cycles (over 10000), high energy density (above 400 Wh/kg) and high Coulombic efficiency above 96%, making them competitive with commercial Li-ion batteries and paving the way for its large-scale commercialisation.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/101025294
Start date: 01-11-2021
End date: 09-02-2025
Total budget - Public funding: 224 933,76 Euro - 224 933,00 Euro
Cordis data

Original description

OptiCarb overall aim is to understand the fundamental mechanisms of sodium-ion intercalation/adsorption in hard carbon anodes and find the optimum carbon atomic configuration that maximises the sodium storage capacity. Experimentally it is difficult to unravel the mechanistic nature of sodium-carbon interactions, due to the complex atomic structure of hard carbons. Therefore, theoretical studies based on molecular simulations are crucial, as they can achieve atomistic resolution. However, up to date there is no realistic model capturing the microstructural complexity of hard carbons available in the literature, which hinders the subsequent study of the sodium-hard carbon interface. In this computational project I will use molecular dynamics simulations and an innovative methodology to generate realistic models of hard carbon anodes that capture porous and pseudo-graphitic domains into a single 3D-connected nanostructure. Our models will allow us to systematically study Na intercalation between pseudo-graphitic layers and Na adsorption in the confined space of carbon pores, which are key to optimise the Na storage capacity. To ensure maximum impact of the gained knowledge from our theoretical studies, I will closely work with experimentalists in my host group to validate and correlate our models with experimental data and guide the experimental design of optimised anodes with high Coulombic efficiency and high capacity. This will push the performance of Na-ion batteries to active long cycles (over 10000), high energy density (above 400 Wh/kg) and high Coulombic efficiency above 96%, making them competitive with commercial Li-ion batteries and paving the way for its large-scale commercialisation.

Status

SIGNED

Call topic

MSCA-IF-2020

Update Date

28-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.3. EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions (MSCA)
H2020-EU.1.3.2. Nurturing excellence by means of cross-border and cross-sector mobility
H2020-MSCA-IF-2020
MSCA-IF-2020 Individual Fellowships