RanMatRanGraCircEl | Random Matrices, Random Graphs and Circular Elements

Summary
Random matrix statistics are a paradigm for the collective behaviour of many strongly correlated random variables. The proposed projects will fundamentally advance our knowledge about random matrices in novel directions.

We study spectral properties of random matrices when the matrix size becomes large. More specifically, we establish the universality of the fluctuations of the smallest singular value of almost square random matrices with independent entries. Moreover, we determine the asymptotic eigenvalue density of non-normal random matrices with correlated entries of general expectation and the Brown measure of operator-valued circular elements. We also obtain a central limit theorem for the difference of the linear statistics of a matrix with independent, identically distributed entries and its minor. Furthermore, we analyse the spectra of random graphs. Specifically, a transition in the eigenvalue fluctuations of very sparse Erdos-Renyi graphs, the eigenvector delocalisation of directed Erdos-Renyi graphs as well as the extreme eigenvalues and eigenvectors of preferential attachment graphs. Finally, we investigate a variational problem motivated by wireless communication.

The techniques proposed for these projects comprise a variety of tools from analysis (spectral theory, variational methods), probability theory (stochastic differential equations, large deviation bounds) and mathematical physics (self-consistent equations). For the purpose of these projects, the tools mentioned above will be developed further.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/895698
Start date: 01-01-2021
End date: 31-12-2022
Total budget - Public funding: 178 207,68 Euro - 178 207,00 Euro
Cordis data

Original description

Random matrix statistics are a paradigm for the collective behaviour of many strongly correlated random variables. The proposed projects will fundamentally advance our knowledge about random matrices in novel directions.

We study spectral properties of random matrices when the matrix size becomes large. More specifically, we establish the universality of the fluctuations of the smallest singular value of almost square random matrices with independent entries. Moreover, we determine the asymptotic eigenvalue density of non-normal random matrices with correlated entries of general expectation and the Brown measure of operator-valued circular elements. We also obtain a central limit theorem for the difference of the linear statistics of a matrix with independent, identically distributed entries and its minor. Furthermore, we analyse the spectra of random graphs. Specifically, a transition in the eigenvalue fluctuations of very sparse Erdos-Renyi graphs, the eigenvector delocalisation of directed Erdos-Renyi graphs as well as the extreme eigenvalues and eigenvectors of preferential attachment graphs. Finally, we investigate a variational problem motivated by wireless communication.

The techniques proposed for these projects comprise a variety of tools from analysis (spectral theory, variational methods), probability theory (stochastic differential equations, large deviation bounds) and mathematical physics (self-consistent equations). For the purpose of these projects, the tools mentioned above will be developed further.

Status

CLOSED

Call topic

MSCA-IF-2019

Update Date

28-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.3. EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions (MSCA)
H2020-EU.1.3.2. Nurturing excellence by means of cross-border and cross-sector mobility
H2020-MSCA-IF-2019
MSCA-IF-2019