HMAM | Healing Multiphysics of Asphalt Materials

Summary
HMAM aims to train a talented research Fellow through an interdisciplinary project focused on modelling the coupled healing multiphysics in asphalt materials (AMs) including the processes of chemical bonding, mechanical responses, environmental condition variations and microstructural morphology changes. The primary deliverables resulting from the HMAM include a better understanding of AMs’ healing mechanisms, an accurate performance prediction framework and evaluation protocol for healing-capable AMs, and an implementation of healing materials and technologies in sustainable road construction. Through the research, the Fellow will receive intensive technical training in multidisciplinary field of chemistry (Aston), material science (Aston), computational modelling (Aston, TUD), experimental characterization (UoN) and industrial applications (Nynas and AI). The Fellow will also receive inter-sectoral and professional skills training in project management, outreach, networking and intellectual property protection. The benefits brought by HMAM is represented by strengthening the EU industry leadership in healing material innovation and aiding the EU engineers in asphalt material selections, road structural design and techno-economic analysis. The implementation of healing-capable asphalt materials in road infrastructures will extend the road service life and ultimately reduce the greenhouse gas emissions and save natural resources like petroleum bitumen and mineral aggregates. Uniquely, the project will enable the Fellow to obtain interdisciplinary knowledge and inter-sectoral complementary skills by building a new and exciting research field, which will pave a solid foundation for the Fellow towards his career of being an independent expert researcher in the areas of infrastructure sustainability and construction materials at a top European university.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/789551
Start date: 08-10-2018
End date: 07-10-2020
Total budget - Public funding: 195 454,80 Euro - 195 454,00 Euro
Cordis data

Original description

HMAM aims to train a talented research Fellow through an interdisciplinary project focused on modelling the coupled healing multiphysics in asphalt materials (AMs) including the processes of chemical bonding, mechanical responses, environmental condition variations and microstructural morphology changes. The primary deliverables resulting from the HMAM include a better understanding of AMs’ healing mechanisms, an accurate performance prediction framework and evaluation protocol for healing-capable AMs, and an implementation of healing materials and technologies in sustainable road construction. Through the research, the Fellow will receive intensive technical training in multidisciplinary field of chemistry (Aston), material science (Aston), computational modelling (Aston, TUD), experimental characterization (UoN) and industrial applications (Nynas and AI). The Fellow will also receive inter-sectoral and professional skills training in project management, outreach, networking and intellectual property protection. The benefits brought by HMAM is represented by strengthening the EU industry leadership in healing material innovation and aiding the EU engineers in asphalt material selections, road structural design and techno-economic analysis. The implementation of healing-capable asphalt materials in road infrastructures will extend the road service life and ultimately reduce the greenhouse gas emissions and save natural resources like petroleum bitumen and mineral aggregates. Uniquely, the project will enable the Fellow to obtain interdisciplinary knowledge and inter-sectoral complementary skills by building a new and exciting research field, which will pave a solid foundation for the Fellow towards his career of being an independent expert researcher in the areas of infrastructure sustainability and construction materials at a top European university.

Status

CLOSED

Call topic

MSCA-IF-2017

Update Date

28-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.3. EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions (MSCA)
H2020-EU.1.3.2. Nurturing excellence by means of cross-border and cross-sector mobility
H2020-MSCA-IF-2017
MSCA-IF-2017