InWAS | Non-linear, control-informed optimisation of innovative wave absorbing structures using highly-efficient numerical methods

Summary
Throughout the InWAS project, the experienced researcher (ER) will apply computationally efficient numerical techniques to the non-linear, control-informed optimisation of innovative wave absorbing structures (InWAS). The project will accelerate the integration of wave energy into the European electricity mix, by developing more efficient designs. It will also help in disseminating innovative numerical methods amongst fluid dynamicists for other pertinent applications. The fellowship will be carried out at the ESPCI Paris within the PMMH lab (Physics and Mechanics of Heterogeneous Media), with the Biomimetics and Fluid-Structure Interaction group, under the supervision of Dr Ramiro Godoy-Diana and co-supervision of Dr Benjamin Thiria. The project will benefit from PMMH’s renowned expertise in theoretical and experimental hydrodynamic modelling, and the ER will make the most of this ideal working environment to extend his own skills and his research network. Two secondment periods, through stays at the Centre for Ocean Energy Research (COER), Maynooth University, Ireland, will be carried out under the supervision of Prof. John Ringwood. The secondments will ensure that the control-related aspects of the project are handled in a state-of-the-art fashion, based on COER’s leading academic status in system dynamics and control applied to wave energy. The project will yield novel licensable ideas with significant commercial prospects. By the end of the fellowship, the ER will have progressed on his way to become a recognised researcher, able to initiate and supervise his own projects at the intersection of fluid mechanics and non-linear system analysis and control.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/842967
Start date: 10-02-2020
End date: 12-12-2023
Total budget - Public funding: 184 707,84 Euro - 184 707,00 Euro
Cordis data

Original description

Throughout the InWAS project, the experienced researcher (ER) will apply computationally efficient numerical techniques to the non-linear, control-informed optimisation of innovative wave absorbing structures (InWAS). The project will accelerate the integration of wave energy into the European electricity mix, by developing more efficient designs. It will also help in disseminating innovative numerical methods amongst fluid dynamicists for other pertinent applications. The fellowship will be carried out at the ESPCI Paris within the PMMH lab (Physics and Mechanics of Heterogeneous Media), with the Biomimetics and Fluid-Structure Interaction group, under the supervision of Dr Ramiro Godoy-Diana and co-supervision of Dr Benjamin Thiria. The project will benefit from PMMH’s renowned expertise in theoretical and experimental hydrodynamic modelling, and the ER will make the most of this ideal working environment to extend his own skills and his research network. Two secondment periods, through stays at the Centre for Ocean Energy Research (COER), Maynooth University, Ireland, will be carried out under the supervision of Prof. John Ringwood. The secondments will ensure that the control-related aspects of the project are handled in a state-of-the-art fashion, based on COER’s leading academic status in system dynamics and control applied to wave energy. The project will yield novel licensable ideas with significant commercial prospects. By the end of the fellowship, the ER will have progressed on his way to become a recognised researcher, able to initiate and supervise his own projects at the intersection of fluid mechanics and non-linear system analysis and control.

Status

CLOSED

Call topic

MSCA-IF-2018

Update Date

28-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.3. EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions (MSCA)
H2020-EU.1.3.2. Nurturing excellence by means of cross-border and cross-sector mobility
H2020-MSCA-IF-2018
MSCA-IF-2018