TVISTOFF | Tick-Virus Interactions Shape persistence and Transmission OF Flavivirus pathogen in tick vector

Summary
In Europe, tick-borne encephalitis virus (TBEV) causes tick-borne encephalitis, the most important viral life-threatening disease transmitted by ticks. Interactions among the virus, tick and host are inseparable and paramount for a successful circulation of TBEV in an enzootic cycle. Nevertheless, research in this area has predominantly focused on TBEV pathogenesis in vertebrate hosts. Limited knowledge on virus-tick interactions points out to lack of systematic studies and warrants research implementing novel virus-tick models. Therefore, the goal of this fellowship is to investigate the roles of molecular factors of TBEV virulence and tick neurosecretory compounds in adaptation and transmission of TBEV. The innovative concept involves a development of fluorescently labelled TBEV mutants by reverse genetics, implementation of host-free artificial membrane tick feeding system, and characterising components of tick neuroendocrine systems. The interdisciplinary approach of interconnecting the applicant's unique skills in tick physiology and bacterial tick-borne pathogens, expertise of the host group in arbovirology and capacity of partner group in physiology of tick neuroendocrine systems will be instrumental in widening knowledge on virus-tick interactions. Developed tools and obtained results will provide invaluable foundation for research of other neglected tick-borne viruses. Taking together, this fellowship will enable the applicant to reintegrate into the host organisation in his home country, to carry out innovative research, and ultimately to reach professional maturity as an independent investigator.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/101030179
Start date: 01-09-2021
End date: 31-08-2023
Total budget - Public funding: 155 364,48 Euro - 155 364,00 Euro
Cordis data

Original description

In Europe, tick-borne encephalitis virus (TBEV) causes tick-borne encephalitis, the most important viral life-threatening disease transmitted by ticks. Interactions among the virus, tick and host are inseparable and paramount for a successful circulation of TBEV in an enzootic cycle. Nevertheless, research in this area has predominantly focused on TBEV pathogenesis in vertebrate hosts. Limited knowledge on virus-tick interactions points out to lack of systematic studies and warrants research implementing novel virus-tick models. Therefore, the goal of this fellowship is to investigate the roles of molecular factors of TBEV virulence and tick neurosecretory compounds in adaptation and transmission of TBEV. The innovative concept involves a development of fluorescently labelled TBEV mutants by reverse genetics, implementation of host-free artificial membrane tick feeding system, and characterising components of tick neuroendocrine systems. The interdisciplinary approach of interconnecting the applicant's unique skills in tick physiology and bacterial tick-borne pathogens, expertise of the host group in arbovirology and capacity of partner group in physiology of tick neuroendocrine systems will be instrumental in widening knowledge on virus-tick interactions. Developed tools and obtained results will provide invaluable foundation for research of other neglected tick-borne viruses. Taking together, this fellowship will enable the applicant to reintegrate into the host organisation in his home country, to carry out innovative research, and ultimately to reach professional maturity as an independent investigator.

Status

CLOSED

Call topic

MSCA-IF-2020

Update Date

28-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.3. EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions (MSCA)
H2020-EU.1.3.2. Nurturing excellence by means of cross-border and cross-sector mobility
H2020-MSCA-IF-2020
MSCA-IF-2020 Individual Fellowships