SMILE | 3D Silicon Micromachining with Infrared ultrafast LasErs

Summary
The aim of the present proposal is to initiate an interdisciplinary research program to develop 3D micromachining of silicon towards novel silicon photonics and microfluidic applications. We are motivated by the myriad of applications based on 3D micromachining of glass that peaked in the early 2000's, and still continues to impact integrated photonics and microfluidics, among other fields. These successes were achieved using lasers at wavelengths for which glass is transparent (most commonly 1 um, 800 nm and their second harmonics). Most of the important results demonstrated in glass can be carried over to silicon using a long-wavelength laser (beyond 1.1 um, silicon is highly transparent), though it is clear that the physics will be different, not least because glass is amorphous and silicon is crystalline. To this end, we propose an interdisciplinary research effort that includes first developing the necessary laser technology, then building up the physical understanding, and finally pursuing high impact applications. Our approach can be summarized as:

(1) Developing a novel, femtosecond, high-energy laser at 1.5 um,
(2) Developing in-situ diagnostics based on pump-probe imaging of the laser-material interaction,
(3) Exploring the physics of the laser-silicon interaction,
(4) Applying our physical understanding and laser technology as a platform to 3D micromachining of silicon towards novel silicon-photonics and microfluidic applications.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/660769
Start date: 30-09-2015
End date: 29-09-2017
Total budget - Public funding: 145 845,60 Euro - 145 845,00 Euro
Cordis data

Original description

The aim of the present proposal is to initiate an interdisciplinary research program to develop 3D micromachining of silicon towards novel silicon photonics and microfluidic applications. We are motivated by the myriad of applications based on 3D micromachining of glass that peaked in the early 2000's, and still continues to impact integrated photonics and microfluidics, among other fields. These successes were achieved using lasers at wavelengths for which glass is transparent (most commonly 1 um, 800 nm and their second harmonics). Most of the important results demonstrated in glass can be carried over to silicon using a long-wavelength laser (beyond 1.1 um, silicon is highly transparent), though it is clear that the physics will be different, not least because glass is amorphous and silicon is crystalline. To this end, we propose an interdisciplinary research effort that includes first developing the necessary laser technology, then building up the physical understanding, and finally pursuing high impact applications. Our approach can be summarized as:

(1) Developing a novel, femtosecond, high-energy laser at 1.5 um,
(2) Developing in-situ diagnostics based on pump-probe imaging of the laser-material interaction,
(3) Exploring the physics of the laser-silicon interaction,
(4) Applying our physical understanding and laser technology as a platform to 3D micromachining of silicon towards novel silicon-photonics and microfluidic applications.

Status

CLOSED

Call topic

MSCA-IF-2014-EF

Update Date

28-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.3. EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions (MSCA)
H2020-EU.1.3.2. Nurturing excellence by means of cross-border and cross-sector mobility
H2020-MSCA-IF-2014
MSCA-IF-2014-EF Marie Skłodowska-Curie Individual Fellowships (IF-EF)