DIRECtA | Targeting the Endocannabinoid System within Islets of Langerhans to Protect against Immune Destruction.

Summary
Europe has the highest prevalence per capita of children with type 1 diabetes (T1D), an autoimmune disease with no cure that results in progressive destruction, and finally an absolute loss, of insulin-producing beta (β) cells in islets of Langerhans in the pancreas. This means that patients require exogenous insulin administration for life. Additionally, prolonged uncontrolled blood glucose levels increase the risk of cardiovascular diseases, peripheral neuropathy, renal failure and numerous infections. The endocannabinoid receptors (ECRs) CB1, CB2 and GPR55 are regulators of metabolism and immune action and are also present on β cells. Cannabidiol, a CB1 antagonist, reduced the incidence of T1D in mice by reducing insulitis, thereby preserving β cell mass. Additionally, blockade of CB1 alters insulin secretion, increasing proliferation and autophagy in β cells. Importantly, β cell-specific CB1 knockout mice have no T-cell infiltration in islets when their pancreas is challenged. Furthermore, activation of GPR55 and CB2 are reported to be beneficial in protecting from inflammation. In this project we intend to study the interaction of the ECRs and their potential synergy for protecting β cells from insulitis. For this purpose, we will generate a non-obese diabetic (spontaneously develops autoimmune insulitis) β cell-specific CB1 knockout mouse, and use pharmacological approaches to enhance GPR55 and CB2 signalling to determine if the diabetic condition can be prevented/ameliorated. We will assess β cell damage together with mitochondrial function, autophagy, and inflammatory responses in our mouse model and after pharmacological manipulation. Thus, this project proposes a new strategy, not focusing on the immune system but on the role that β cells themselves play in modulating their own reactivity, for the development of new therapies for preventing and/or treating T1D.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/748749
Start date: 03-01-2018
End date: 02-01-2020
Total budget - Public funding: 158 121,60 Euro - 158 121,00 Euro
Cordis data

Original description

Europe has the highest prevalence per capita of children with type 1 diabetes (T1D), an autoimmune disease with no cure that results in progressive destruction, and finally an absolute loss, of insulin-producing beta (β) cells in islets of Langerhans in the pancreas. This means that patients require exogenous insulin administration for life. Additionally, prolonged uncontrolled blood glucose levels increase the risk of cardiovascular diseases, peripheral neuropathy, renal failure and numerous infections. The endocannabinoid receptors (ECRs) CB1, CB2 and GPR55 are regulators of metabolism and immune action and are also present on β cells. Cannabidiol, a CB1 antagonist, reduced the incidence of T1D in mice by reducing insulitis, thereby preserving β cell mass. Additionally, blockade of CB1 alters insulin secretion, increasing proliferation and autophagy in β cells. Importantly, β cell-specific CB1 knockout mice have no T-cell infiltration in islets when their pancreas is challenged. Furthermore, activation of GPR55 and CB2 are reported to be beneficial in protecting from inflammation. In this project we intend to study the interaction of the ECRs and their potential synergy for protecting β cells from insulitis. For this purpose, we will generate a non-obese diabetic (spontaneously develops autoimmune insulitis) β cell-specific CB1 knockout mouse, and use pharmacological approaches to enhance GPR55 and CB2 signalling to determine if the diabetic condition can be prevented/ameliorated. We will assess β cell damage together with mitochondrial function, autophagy, and inflammatory responses in our mouse model and after pharmacological manipulation. Thus, this project proposes a new strategy, not focusing on the immune system but on the role that β cells themselves play in modulating their own reactivity, for the development of new therapies for preventing and/or treating T1D.

Status

CLOSED

Call topic

MSCA-IF-2016

Update Date

28-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.3. EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions (MSCA)
H2020-EU.1.3.2. Nurturing excellence by means of cross-border and cross-sector mobility
H2020-MSCA-IF-2016
MSCA-IF-2016