TRAP-CART | Tumor targeting through a TME-specific regulatory code and programmable CAR T cells

Summary
Two major issues hamper successful treatment of solid cancers with CAR T cells. First, immunosuppression imposed by the tumor microenvironment (TME) can compromise CAR T cell function. Second, CAR T cells require specific antigens for precise tumor recognition to limit/avoid toxicities associated with on-target/off-tumor activity. Initial attempts to overcome these challenges included immune checkpoint blockade and tunable CAR T cells. Here, we propose to develop a conceptually new framework for solid tumor therapy that introduces genetically modified, blood-derived TME cells as Trojan horses to deliver inflammation and broadcast “intratumor” signals that activate programmable CAR T cells. Overall, we will design a hematopoietic stem cell (HSC)-directed strategy for Tumor microenvironment-Regulated Activation of Programmable CAR T (TRAP-CART). This project builds on the host lab’s expertise in high-throughput genomics, bioinformatics, and CAR T cells, and on my own background in HSC engineering.

Through epigenome/transcriptome profiling, we will systematically identify gene-regulatory elements that are specific to blood-derived cells in the TME. We will use such regulatory sequences for HSC-directed gene therapy, such that their progeny will express a programmed transgene only in the immediate vicinity of tumor cells. This TME-regulated transgene will induce inflammation (to help overcome the hostile immune environment of many solid tumors) and/or release localized activatory signals for CAR T-cells (making it possible to use weakly specific CARs while avoiding on-target/off-tumor activity elsewhere in the body). We will focus on melanoma as our “model cancer”, which has a high mutational burden, good mouse models and is widely used for testing cutting-edge immunotherapies.

Specific Objectives:

1)Develop a promoter/enhancer toolbox for HSC gene therapy targeting the TME
2)Induce a CAR T-supportive TME that activates programmable CAR T-cells in situ
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/101026676
Start date: 01-04-2021
End date: 31-03-2023
Total budget - Public funding: 174 167,04 Euro - 174 167,00 Euro
Cordis data

Original description

Two major issues hamper successful treatment of solid cancers with CAR T cells. First, immunosuppression imposed by the tumor microenvironment (TME) can compromise CAR T cell function. Second, CAR T cells require specific antigens for precise tumor recognition to limit/avoid toxicities associated with on-target/off-tumor activity. Initial attempts to overcome these challenges included immune checkpoint blockade and tunable CAR T cells. Here, we propose to develop a conceptually new framework for solid tumor therapy that introduces genetically modified, blood-derived TME cells as Trojan horses to deliver inflammation and broadcast “intratumor” signals that activate programmable CAR T cells. Overall, we will design a hematopoietic stem cell (HSC)-directed strategy for Tumor microenvironment-Regulated Activation of Programmable CAR T (TRAP-CART). This project builds on the host lab’s expertise in high-throughput genomics, bioinformatics, and CAR T cells, and on my own background in HSC engineering.

Through epigenome/transcriptome profiling, we will systematically identify gene-regulatory elements that are specific to blood-derived cells in the TME. We will use such regulatory sequences for HSC-directed gene therapy, such that their progeny will express a programmed transgene only in the immediate vicinity of tumor cells. This TME-regulated transgene will induce inflammation (to help overcome the hostile immune environment of many solid tumors) and/or release localized activatory signals for CAR T-cells (making it possible to use weakly specific CARs while avoiding on-target/off-tumor activity elsewhere in the body). We will focus on melanoma as our “model cancer”, which has a high mutational burden, good mouse models and is widely used for testing cutting-edge immunotherapies.

Specific Objectives:

1)Develop a promoter/enhancer toolbox for HSC gene therapy targeting the TME
2)Induce a CAR T-supportive TME that activates programmable CAR T-cells in situ

Status

CLOSED

Call topic

MSCA-IF-2020

Update Date

28-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.3. EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions (MSCA)
H2020-EU.1.3.2. Nurturing excellence by means of cross-border and cross-sector mobility
H2020-MSCA-IF-2020
MSCA-IF-2020 Individual Fellowships