Summary
Throughout the European Union, questions about the sustainability of our lifestyles have become a strong motivation for innovations in chemical energy conversion and storage. Hydrogen is expected to play the key role in future developments. The electrochemical hydrogen evolution reaction (HER) is an important and future-oriented way of producing hydrogen. Tremendous efforts have been made to develop new materials as substitutes for Pt-based HER catalysts. Two dimensional transition metal dichalcogenide (TMD) are promising replacements due to their admirable catalytic activity and low cost. However, the expectations in TMDs as alternative HER catalysts have not yet been fulfilled.
It is well known that local variations in the chemical composition and morphological characteristics (planes, edges) influence catalytic effects and thus change electrochemical activity. The development of advanced nanocomposites of two or more TMDs is therefore a fascinating and targeted approach which faces several challenges. One major challenge, especially for complex materials where modifications can cause multiple changes, is pinpointing the electrochemical activity to individual surface characteristics to identify catalytic hotspots. Another big challenge is the selective creation of catalytic hotspots up to the construction of well divined and highly efficient nanocomposite structures. The scanning electrochemical microscope enables the correlation of electrochemical activity to surface characteristics as well as the template-free chemical structuring of surfaces. In particular, the direct read out after induced modifications will deliver unprecedently detailed information about catalytic hotspots. This project aims to apply localized electrochemistry to provide clear solutions for both challenges and to finally path the way to new advanced 2D materials for further energy related innovations.
It is well known that local variations in the chemical composition and morphological characteristics (planes, edges) influence catalytic effects and thus change electrochemical activity. The development of advanced nanocomposites of two or more TMDs is therefore a fascinating and targeted approach which faces several challenges. One major challenge, especially for complex materials where modifications can cause multiple changes, is pinpointing the electrochemical activity to individual surface characteristics to identify catalytic hotspots. Another big challenge is the selective creation of catalytic hotspots up to the construction of well divined and highly efficient nanocomposite structures. The scanning electrochemical microscope enables the correlation of electrochemical activity to surface characteristics as well as the template-free chemical structuring of surfaces. In particular, the direct read out after induced modifications will deliver unprecedently detailed information about catalytic hotspots. This project aims to apply localized electrochemistry to provide clear solutions for both challenges and to finally path the way to new advanced 2D materials for further energy related innovations.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: | https://cordis.europa.eu/project/id/888797 |
Start date: | 01-07-2020 |
End date: | 30-06-2022 |
Total budget - Public funding: | 144 980,64 Euro - 144 980,00 Euro |
Cordis data
Original description
Throughout the European Union, questions about the sustainability of our lifestyles have become a strong motivation for innovations in chemical energy conversion and storage. Hydrogen is expected to play the key role in future developments. The electrochemical hydrogen evolution reaction (HER) is an important and future-oriented way of producing hydrogen. Tremendous efforts have been made to develop new materials as substitutes for Pt-based HER catalysts. Two dimensional transition metal dichalcogenide (TMD) are promising replacements due to their admirable catalytic activity and low cost. However, the expectations in TMDs as alternative HER catalysts have not yet been fulfilled.It is well known that local variations in the chemical composition and morphological characteristics (planes, edges) influence catalytic effects and thus change electrochemical activity. The development of advanced nanocomposites of two or more TMDs is therefore a fascinating and targeted approach which faces several challenges. One major challenge, especially for complex materials where modifications can cause multiple changes, is pinpointing the electrochemical activity to individual surface characteristics to identify catalytic hotspots. Another big challenge is the selective creation of catalytic hotspots up to the construction of well divined and highly efficient nanocomposite structures. The scanning electrochemical microscope enables the correlation of electrochemical activity to surface characteristics as well as the template-free chemical structuring of surfaces. In particular, the direct read out after induced modifications will deliver unprecedently detailed information about catalytic hotspots. This project aims to apply localized electrochemistry to provide clear solutions for both challenges and to finally path the way to new advanced 2D materials for further energy related innovations.
Status
CLOSEDCall topic
MSCA-IF-2019Update Date
28-04-2024
Images
No images available.
Geographical location(s)