Summary
The overall aim of this project is to establish a new connection between representation theory and algebraic geometry. In recent years, great progress has been done in the understanding of stability conditions over module categories, notably in the description of the wall and chamber structure of finite-dimensional algebras via tau-tilting theory. During this fellowship I will undertake research that will lead to a deeper understanding of these stability conditions and I will apply these tools to the Homological Mirror Symmetry Program and the study of toric varieties.
It is known that most of the information of wall-crossing phenomena of cluster algebras is encoded in the so-called cluster scattering diagram, recently introduced by Gross-Hacking-Keel-Kontsevich. In a seminal paper, Bridgeland showed that these scattering diagrams are intimately related with the wall and chamber structure of certain jacobian algebras. The wall and chamber structure of an algebra has a rich combinatorial structure. In particular, it has the structure of what is known as a fan in toric geometry. Each fan determines uniquely a toric variety.
In this project, I will study tau-tilting theory and stability conditions in four different ways. From the more representation theoretic to the more geometric, these are the following: I will attack problems on tau-tilting theory related with the finitistic dimension conjecture; I will show how the wall and chamber structure of two algebras encode the homological relation between them; I will use the knowledge about wall and chamber structures for finite-dimensional algebra to study wall-crossing phenomena beyond the realm of cluster algebras; I will establish the relation between certain homological properties of finite-dimensional algebras with the homological properties of their associated toric varieties.
It is known that most of the information of wall-crossing phenomena of cluster algebras is encoded in the so-called cluster scattering diagram, recently introduced by Gross-Hacking-Keel-Kontsevich. In a seminal paper, Bridgeland showed that these scattering diagrams are intimately related with the wall and chamber structure of certain jacobian algebras. The wall and chamber structure of an algebra has a rich combinatorial structure. In particular, it has the structure of what is known as a fan in toric geometry. Each fan determines uniquely a toric variety.
In this project, I will study tau-tilting theory and stability conditions in four different ways. From the more representation theoretic to the more geometric, these are the following: I will attack problems on tau-tilting theory related with the finitistic dimension conjecture; I will show how the wall and chamber structure of two algebras encode the homological relation between them; I will use the knowledge about wall and chamber structures for finite-dimensional algebra to study wall-crossing phenomena beyond the realm of cluster algebras; I will establish the relation between certain homological properties of finite-dimensional algebras with the homological properties of their associated toric varieties.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: | https://cordis.europa.eu/project/id/893654 |
Start date: | 01-09-2021 |
End date: | 30-09-2023 |
Total budget - Public funding: | 184 707,84 Euro - 184 707,00 Euro |
Cordis data
Original description
The overall aim of this project is to establish a new connection between representation theory and algebraic geometry. In recent years, great progress has been done in the understanding of stability conditions over module categories, notably in the description of the wall and chamber structure of finite-dimensional algebras via tau-tilting theory. During this fellowship I will undertake research that will lead to a deeper understanding of these stability conditions and I will apply these tools to the Homological Mirror Symmetry Program and the study of toric varieties.It is known that most of the information of wall-crossing phenomena of cluster algebras is encoded in the so-called cluster scattering diagram, recently introduced by Gross-Hacking-Keel-Kontsevich. In a seminal paper, Bridgeland showed that these scattering diagrams are intimately related with the wall and chamber structure of certain jacobian algebras. The wall and chamber structure of an algebra has a rich combinatorial structure. In particular, it has the structure of what is known as a fan in toric geometry. Each fan determines uniquely a toric variety.
In this project, I will study tau-tilting theory and stability conditions in four different ways. From the more representation theoretic to the more geometric, these are the following: I will attack problems on tau-tilting theory related with the finitistic dimension conjecture; I will show how the wall and chamber structure of two algebras encode the homological relation between them; I will use the knowledge about wall and chamber structures for finite-dimensional algebra to study wall-crossing phenomena beyond the realm of cluster algebras; I will establish the relation between certain homological properties of finite-dimensional algebras with the homological properties of their associated toric varieties.
Status
CLOSEDCall topic
MSCA-IF-2019Update Date
28-04-2024
Images
No images available.
Geographical location(s)