StartAct | Controlling forelimb actions through basal ganglia to brainstem signaling

Summary
Behavior arises through the combination of movements within distributed circuits. Most work in the past focused on high motor centers and executive circuits in the spinal cord, but how these systems are linked in order to function is poorly understood.
The substantia nigra reticulata (SNR), a basal ganglia output, sends projections to the brainstem. Yet how the brainstem processes these inputs to control actions remains unknown. The Arber lab discovered that the parvocellular reticular formation (PCRt) of the mouse brainstem harbors neurons controlling forelimb behaviors including reaching. PCRt neurons receive inhibitory inputs from the SNR. Thus, the SNR-PCRt circuit is an excellent stepping stone for understanding the mechanisms behind self-initiated actions.
I propose to investigate the impact of the SNR signaling on the activity of PCRt neurons when a mouse self-initiates forelimb reaching. I will characterize the anatomy and nature of SNR to PCRt connections to understand whether and how this architecture supports forelimb movement. I will combine a behavioral task designed to isolate the neuronal events around the triggering of a self-initiated action with loss- and gain of function perturbations to unravel the building blocks of self-initiated actions. Finally, I will use the task while monitoring the activity of specific SNR and PCRt neurons to understand how the different actors physically implement the operations for self-initiated actions.
Together, my experiments will disclose the fine-scale machinery for initiating and controlling an action. This level of understanding is key for designing new therapies to help people impaired in self- initiating actions such in Parkinson’s disease. The fellowship will provide me with the unique opportunity to expand my expertise and establish the foundations of my future career as an independent group leader.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/892116
Start date: 01-09-2021
End date: 01-12-2023
Total budget - Public funding: 203 149,44 Euro - 203 149,00 Euro
Cordis data

Original description

Behavior arises through the combination of movements within distributed circuits. Most work in the past focused on high motor centers and executive circuits in the spinal cord, but how these systems are linked in order to function is poorly understood.
The substantia nigra reticulata (SNR), a basal ganglia output, sends projections to the brainstem. Yet how the brainstem processes these inputs to control actions remains unknown. The Arber lab discovered that the parvocellular reticular formation (PCRt) of the mouse brainstem harbors neurons controlling forelimb behaviors including reaching. PCRt neurons receive inhibitory inputs from the SNR. Thus, the SNR-PCRt circuit is an excellent stepping stone for understanding the mechanisms behind self-initiated actions.
I propose to investigate the impact of the SNR signaling on the activity of PCRt neurons when a mouse self-initiates forelimb reaching. I will characterize the anatomy and nature of SNR to PCRt connections to understand whether and how this architecture supports forelimb movement. I will combine a behavioral task designed to isolate the neuronal events around the triggering of a self-initiated action with loss- and gain of function perturbations to unravel the building blocks of self-initiated actions. Finally, I will use the task while monitoring the activity of specific SNR and PCRt neurons to understand how the different actors physically implement the operations for self-initiated actions.
Together, my experiments will disclose the fine-scale machinery for initiating and controlling an action. This level of understanding is key for designing new therapies to help people impaired in self- initiating actions such in Parkinson’s disease. The fellowship will provide me with the unique opportunity to expand my expertise and establish the foundations of my future career as an independent group leader.

Status

CLOSED

Call topic

MSCA-IF-2019

Update Date

28-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.3. EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions (MSCA)
H2020-EU.1.3.2. Nurturing excellence by means of cross-border and cross-sector mobility
H2020-MSCA-IF-2019
MSCA-IF-2019