ENDONANO | Quantitative detection of bacterial endotoxin by novel nanotechnological approaches

Summary
ENDONANO (Quantitative detection of bacterial endotoxin by novel nanotechnological approaches) addresses a key regulatory and safety issue, i.e., the unbiased quantitative detection of bacterial endotoxin in products for medical use and in drug development and toxicological studies. The currently adopted LAL assays are reliable only in limited conditions and prone to interference at several levels, and therefore cannot be applied to all products and substances. ENDONANO will exploit new concepts, based on the capacity of metal nanoparticles to adsorb endotoxin, and new detection methods, based on molecular beacons, for developing novel assays to quantitatively detect endotoxin in complex matrices and in a wide range of conditions. The scientific and technological goals of ENDONANO include: 1. Investigating the capacity of endotoxin to specifically inducing inflammatory reactions in human primary blood cells; 2. Developing new methods based on endotoxin capture by metal nanoparticles in complex matrices (biological fluids, emulsions, gels, etc.); 3. Designing and implementing signal generation and detection methods for the quantitative endotoxin measurement; 4. Planning assay prototypes to be developed and validated for commercial purposes. ENDONANO will train 4 PhD students in an overarching training programme that will include training-by-research, courses of technical, scientific, and transferrable skills, active participation to public scientific events, and intense intersectoral networking. The ENDONANO consortium encompasses three academic institutions with strong expertise in inflammation, advanced biosensing, and top expertise in nanotechnology and use of nanoparticles for modulating bacterial functions, two SMEs expert in development and commercialisation of diagnostic detection assays and one biotech company specialised in (magnetic) microbead technology, and two Participant Organisations (SMEs). All have proven experience in higher education and training,
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/812661
Start date: 01-01-2019
End date: 30-06-2023
Total budget - Public funding: 1 035 724,38 Euro - 1 035 724,00 Euro
Cordis data

Original description

ENDONANO (Quantitative detection of bacterial endotoxin by novel nanotechnological approaches) addresses a key regulatory and safety issue, i.e., the unbiased quantitative detection of bacterial endotoxin in products for medical use and in drug development and toxicological studies. The currently adopted LAL assays are reliable only in limited conditions and prone to interference at several levels, and therefore cannot be applied to all products and substances. ENDONANO will exploit new concepts, based on the capacity of metal nanoparticles to adsorb endotoxin, and new detection methods, based on molecular beacons, for developing novel assays to quantitatively detect endotoxin in complex matrices and in a wide range of conditions. The scientific and technological goals of ENDONANO include: 1. Investigating the capacity of endotoxin to specifically inducing inflammatory reactions in human primary blood cells; 2. Developing new methods based on endotoxin capture by metal nanoparticles in complex matrices (biological fluids, emulsions, gels, etc.); 3. Designing and implementing signal generation and detection methods for the quantitative endotoxin measurement; 4. Planning assay prototypes to be developed and validated for commercial purposes. ENDONANO will train 4 PhD students in an overarching training programme that will include training-by-research, courses of technical, scientific, and transferrable skills, active participation to public scientific events, and intense intersectoral networking. The ENDONANO consortium encompasses three academic institutions with strong expertise in inflammation, advanced biosensing, and top expertise in nanotechnology and use of nanoparticles for modulating bacterial functions, two SMEs expert in development and commercialisation of diagnostic detection assays and one biotech company specialised in (magnetic) microbead technology, and two Participant Organisations (SMEs). All have proven experience in higher education and training,

Status

CLOSED

Call topic

MSCA-ITN-2018

Update Date

28-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.3. EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions (MSCA)
H2020-EU.1.3.1. Fostering new skills by means of excellent initial training of researchers
H2020-MSCA-ITN-2018
MSCA-ITN-2018