CabaKarst | Between degradation and conservation: The carbon balance of the Chinese karst ecosystem

Summary
Recent studies have shown a globally increasing vegetation cover, also known as the greening Earth. Elevated atmospheric CO2 has been identified as the main driver of this greening. On the contrary, human management is usually reported to cause land degradation and deforestation, especially in humid areas where population pressure is high. This project aims at challenging this simplistic view by introducing the Chinese karst regions as a study area known as one of the world’s most fragile and degraded ecosystems, but also a hot-spot of global greening hosting mega-engineering conservation projects which are the largest in human history. Here my research hypothesis is that conservation efforts in China’s karst regions offset degradation and lead to an increased carbon sequestration with global impact. I aim to (1) develop methods to assess aboveground biomass carbon (ABC) losses and gains with newest satellite data, (2) attribute ABC dynamics to conservation and degradation using inventory data, (3) test the sensitivity of ABC to climate extremes and explain how conservation efforts affect these, and (4) assess the regional and global impact of observed ABC changes as a climate change mitigation measure. Whereas the host institution is world leading in satellite based assessments of climate induced greening of global drylands, me and my project will add a new dimension to the host’s portfolio: the human induced greening of a humid zone. Moreover, the host is world leading in the application of newest satellite data for vegetation cover and ABC assessments and has direct contacts to data developers (e.g. vegetation optical depth based on low frequency passive microwave data). The combination of (a) my regional knowledge, my access to inventory data and contacts to Chinese stake-holders with (b) the host’s experience in data processing and scientific publishing will generate novel knowledge on human induced carbon sequestration as a climate change mitigation measure.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/795970
Start date: 01-11-2018
End date: 10-01-2022
Total budget - Public funding: 200 194,80 Euro - 200 194,00 Euro
Cordis data

Original description

Recent studies have shown a globally increasing vegetation cover, also known as the greening Earth. Elevated atmospheric CO2 has been identified as the main driver of this greening. On the contrary, human management is usually reported to cause land degradation and deforestation, especially in humid areas where population pressure is high. This project aims at challenging this simplistic view by introducing the Chinese karst regions as a study area known as one of the world’s most fragile and degraded ecosystems, but also a hot-spot of global greening hosting mega-engineering conservation projects which are the largest in human history. Here my research hypothesis is that conservation efforts in China’s karst regions offset degradation and lead to an increased carbon sequestration with global impact. I aim to (1) develop methods to assess aboveground biomass carbon (ABC) losses and gains with newest satellite data, (2) attribute ABC dynamics to conservation and degradation using inventory data, (3) test the sensitivity of ABC to climate extremes and explain how conservation efforts affect these, and (4) assess the regional and global impact of observed ABC changes as a climate change mitigation measure. Whereas the host institution is world leading in satellite based assessments of climate induced greening of global drylands, me and my project will add a new dimension to the host’s portfolio: the human induced greening of a humid zone. Moreover, the host is world leading in the application of newest satellite data for vegetation cover and ABC assessments and has direct contacts to data developers (e.g. vegetation optical depth based on low frequency passive microwave data). The combination of (a) my regional knowledge, my access to inventory data and contacts to Chinese stake-holders with (b) the host’s experience in data processing and scientific publishing will generate novel knowledge on human induced carbon sequestration as a climate change mitigation measure.

Status

CLOSED

Call topic

MSCA-IF-2017

Update Date

28-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.3. EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions (MSCA)
H2020-EU.1.3.2. Nurturing excellence by means of cross-border and cross-sector mobility
H2020-MSCA-IF-2017
MSCA-IF-2017