Target-N2O | Targeting N2O emission hot-spots in dairy pastures for mitigation action: microbes, stable isotope methods and modelling

Summary
Nitrogen (N) limits primary productivity in most terrestrial ecosystems, which has led to increased use of N fertilisers within farming systems. The amount of reactive N in global circulation has more than doubled; this has global significance as the N can cascade through different chemical forms in land, air and water, leading to a range of human health and environmental impacts. In order to achieve sustainable food production systems of the future, there is a need to improve knowledge on the best management of farm N, especially under increased demand for food production under a burgeoning human population. The Target-N2O project will deliver a high quality training-through research project aiming to improve N use efficiency and reduce emissions of the powerful greenhouse gas, N2O, from intensive dairy farms. The project will combine multi-disciplinary techniques in a novel way, including molecular ecology, stable isotope methods and whole-farm system modelling to determine the cost-benefits of an N loss mitigation strategy. The strategy would be to apply nitrification inhibitors to pasture areas which have been identified as farm-scale N2O emission hot-spots (e.g. areas of pasture around gateways, livestock shelter areas and camping areas). Such areas receive regular inputs of nutrients including labile N (through urine events) and carbon sources (via dung), which fuel microbial processes leading to enhanced and spatially variable GHG emissions. Evidence of the effectiveness of nitrification inhibitors to reduce N losses from these areas are lacking. The results of the action will have cross-sectoral impact (scientists, dairy and fertiliser industries and policy makers). The project will deliver decision support tools for farmers utilising such a mitigation strategy and will impact policy by improving national GHG inventories, establishing the effectiveness of cost-effective mitigation strategies.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/796830
Start date: 01-11-2018
End date: 31-10-2021
Total budget - Public funding: 276 107,40 Euro - 276 107,00 Euro
Cordis data

Original description

Nitrogen (N) limits primary productivity in most terrestrial ecosystems, which has led to increased use of N fertilisers within farming systems. The amount of reactive N in global circulation has more than doubled; this has global significance as the N can cascade through different chemical forms in land, air and water, leading to a range of human health and environmental impacts. In order to achieve sustainable food production systems of the future, there is a need to improve knowledge on the best management of farm N, especially under increased demand for food production under a burgeoning human population. The Target-N2O project will deliver a high quality training-through research project aiming to improve N use efficiency and reduce emissions of the powerful greenhouse gas, N2O, from intensive dairy farms. The project will combine multi-disciplinary techniques in a novel way, including molecular ecology, stable isotope methods and whole-farm system modelling to determine the cost-benefits of an N loss mitigation strategy. The strategy would be to apply nitrification inhibitors to pasture areas which have been identified as farm-scale N2O emission hot-spots (e.g. areas of pasture around gateways, livestock shelter areas and camping areas). Such areas receive regular inputs of nutrients including labile N (through urine events) and carbon sources (via dung), which fuel microbial processes leading to enhanced and spatially variable GHG emissions. Evidence of the effectiveness of nitrification inhibitors to reduce N losses from these areas are lacking. The results of the action will have cross-sectoral impact (scientists, dairy and fertiliser industries and policy makers). The project will deliver decision support tools for farmers utilising such a mitigation strategy and will impact policy by improving national GHG inventories, establishing the effectiveness of cost-effective mitigation strategies.

Status

CLOSED

Call topic

MSCA-IF-2017

Update Date

28-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.3. EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions (MSCA)
H2020-EU.1.3.2. Nurturing excellence by means of cross-border and cross-sector mobility
H2020-MSCA-IF-2017
MSCA-IF-2017