RootOutP | Investigating interactions between plant roots and phosphorus in soil

Summary
Phosphorus (P) is a scarce resource that is critical for crop production, but it is not being used sustainably. Excessive past fertiliser applications mean large amounts of P have accumulated in soil, losses of which are of major environmental concern. Nonetheless, the majority of soil-P exists in pools of very low bioavailability to plants, due to the high reactivity of P in soil. Increasing the ability of plants to take up P from applied sources (fertilisers) and from accumulated soil reserves would allow for reductions of fertiliser use and decreased potential P losses to the environment. Through evolution, plant roots have adopted several strategies to improve P capture, including: 1) architectural traits that affect the spatial exploration of the soil profile; 2) adaptive (plastic) responses to zones of high P supply (e.g. around fertiliser granules); and 3) physiochemical alteration of the environment in their rhizosphere. A challenge for the research community is to evaluate these properties and their potential benefits to cropping systems. As soil is inherently opaque, these traits are hard to study. Our current knowledge is fragmented because studies have generally used destructive sampling techniques, artificial media, and experimental setups making observations in 1D or 2D. Further advances of our understanding require in-situ visualization and quantification in real soil. This project will deliver such in-situ information, relevant to breeders and agronomists developing crop systems that make better use of applied and accumulated soil P. I will carry out this research under the guidance of Assoc. Prof. Sander Bruun of the Dept. of Plant and Environmental sciences at Copenhagen University and I will make use of the National X-Ray Imaging Facility (DANFIX) and the Center for Quantification of Imaging Data (QIM). I will undertake a secondment with Dr Jakob Santner at the Institute of Agronomy of the University of Natural Resources and Life Sciences, Vienna
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/101027472
Start date: 01-05-2022
End date: 31-03-2025
Total budget - Public funding: 219 312,00 Euro - 219 312,00 Euro
Cordis data

Original description

Phosphorus (P) is a scarce resource that is critical for crop production, but it is not being used sustainably. Excessive past fertiliser applications mean large amounts of P have accumulated in soil, losses of which are of major environmental concern. Nonetheless, the majority of soil-P exists in pools of very low bioavailability to plants, due to the high reactivity of P in soil. Increasing the ability of plants to take up P from applied sources (fertilisers) and from accumulated soil reserves would allow for reductions of fertiliser use and decreased potential P losses to the environment. Through evolution, plant roots have adopted several strategies to improve P capture, including: 1) architectural traits that affect the spatial exploration of the soil profile; 2) adaptive (plastic) responses to zones of high P supply (e.g. around fertiliser granules); and 3) physiochemical alteration of the environment in their rhizosphere. A challenge for the research community is to evaluate these properties and their potential benefits to cropping systems. As soil is inherently opaque, these traits are hard to study. Our current knowledge is fragmented because studies have generally used destructive sampling techniques, artificial media, and experimental setups making observations in 1D or 2D. Further advances of our understanding require in-situ visualization and quantification in real soil. This project will deliver such in-situ information, relevant to breeders and agronomists developing crop systems that make better use of applied and accumulated soil P. I will carry out this research under the guidance of Assoc. Prof. Sander Bruun of the Dept. of Plant and Environmental sciences at Copenhagen University and I will make use of the National X-Ray Imaging Facility (DANFIX) and the Center for Quantification of Imaging Data (QIM). I will undertake a secondment with Dr Jakob Santner at the Institute of Agronomy of the University of Natural Resources and Life Sciences, Vienna

Status

SIGNED

Call topic

MSCA-IF-2020

Update Date

28-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.3. EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions (MSCA)
H2020-EU.1.3.2. Nurturing excellence by means of cross-border and cross-sector mobility
H2020-MSCA-IF-2020
MSCA-IF-2020 Individual Fellowships