Summary
The project aims to show that the electron's electric dipole moment (eEDM) could be measured with an unprecedented precision of 10^{-31} e cm by using ultracold polar molecules. Such a measurement would be a demanding test of theories beyond the Standard Model of particle physics, and a search for the undiscovered forces responsible for the observed asymmetry between matter and anti-matter in the Universe. The key advance that will unlock this extraordinary sensitivity is interferometry with molecules cooled to ultracold temperature.
I will make an intense, slow-moving beam of YbF molecules, which are known to be exceptionally sensitive to the eEDM. I will then apply laser cooling in both transverse directions to bring the temperature below 50 microkelvin, yielding a highly-collimated molecular beam. Next, I will build a spin interferometer using these ultracold molecules. Finally, by paying careful attention to noise sources, especially magnetic field noise, I will show that the interferometer can reach the sensitivity set by the quantum projection noise. Laser cooling of molecules is a new technique, and I will be the first to use it to enhance the sensitivity of a measurement that tests fundamental physics.
I will make an intense, slow-moving beam of YbF molecules, which are known to be exceptionally sensitive to the eEDM. I will then apply laser cooling in both transverse directions to bring the temperature below 50 microkelvin, yielding a highly-collimated molecular beam. Next, I will build a spin interferometer using these ultracold molecules. Finally, by paying careful attention to noise sources, especially magnetic field noise, I will show that the interferometer can reach the sensitivity set by the quantum projection noise. Laser cooling of molecules is a new technique, and I will be the first to use it to enhance the sensitivity of a measurement that tests fundamental physics.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: | https://cordis.europa.eu/project/id/895187 |
Start date: | 01-06-2020 |
End date: | 31-05-2022 |
Total budget - Public funding: | 212 933,76 Euro - 212 933,00 Euro |
Cordis data
Original description
The project aims to show that the electron's electric dipole moment (eEDM) could be measured with an unprecedented precision of 10^{-31} e cm by using ultracold polar molecules. Such a measurement would be a demanding test of theories beyond the Standard Model of particle physics, and a search for the undiscovered forces responsible for the observed asymmetry between matter and anti-matter in the Universe. The key advance that will unlock this extraordinary sensitivity is interferometry with molecules cooled to ultracold temperature.I will make an intense, slow-moving beam of YbF molecules, which are known to be exceptionally sensitive to the eEDM. I will then apply laser cooling in both transverse directions to bring the temperature below 50 microkelvin, yielding a highly-collimated molecular beam. Next, I will build a spin interferometer using these ultracold molecules. Finally, by paying careful attention to noise sources, especially magnetic field noise, I will show that the interferometer can reach the sensitivity set by the quantum projection noise. Laser cooling of molecules is a new technique, and I will be the first to use it to enhance the sensitivity of a measurement that tests fundamental physics.
Status
CLOSEDCall topic
MSCA-IF-2019Update Date
28-04-2024
Images
No images available.
Geographical location(s)