NanoBioS | Nanoscale mineral-microbial interactions, associations, and biosignatures in gypsum stromatolites

Summary
Gypsum-based stromatolites (GS) make excellent paradigms for the investigation of fine-scale mineral-microbial interactions and for the detection of life remnants on gypsiferous deposits of Earth and Mars. Yet, they have been largely overlooked compared to the carbonate microbialites. To date we do not know: i) what is their exact mineralogy, ii) which microbial communities are associated to these structures, iii) what is the exact role of microbes and related bioproducts (e.g., exopolymeric substances) in mineral precipitation and stromatolite construction, and iv) which biosignatures may be preserved in GS.
NanoBioS aims to address this knowledge gap by employing an interdisciplinary approach to study newly discovered gypsum-based stromatolites from Lake Bakili (Danakil Depression, Ethiopia) from a combined microbiology and mineralogy perspective. The Danakil Depression and the difficult-to-access and so-far unexplored Lake Bakili constitute a unique, natural laboratory for the study of both living and fossil gypsum microbialites, and a terrestrial Martian analogue-site. Besides the possibility to discover novel microbial lineages/metabolisms, we will attempt to identify characteristic associations of microbial groups with mineral assemblages and look for biosignatures. The overarching goal of NanoBioS is to gain a deeper understanding of the microbial influence on Ca-sulfate precipitation, as well as, to develop insights for distinguishing fossil life remnants from inorganic biomorphs on Earth and Martian chemical sediments.
The host and secondment host laboratories that have advanced the subject of geomicrobiology of microbialites, will offer me intensive training in cutting-edge molecular biology and mineralogic tools, complementary to my so far geochemical expertise, aside to other, transferable skills. Overall, the development of NanoBioS will be career-defining and it will transform me in an independent, highly competitive, early stage bio-geo-chemist.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/101031812
Start date: 01-10-2021
End date: 30-09-2023
Total budget - Public funding: 196 707,84 Euro - 196 707,00 Euro
Cordis data

Original description

Gypsum-based stromatolites (GS) make excellent paradigms for the investigation of fine-scale mineral-microbial interactions and for the detection of life remnants on gypsiferous deposits of Earth and Mars. Yet, they have been largely overlooked compared to the carbonate microbialites. To date we do not know: i) what is their exact mineralogy, ii) which microbial communities are associated to these structures, iii) what is the exact role of microbes and related bioproducts (e.g., exopolymeric substances) in mineral precipitation and stromatolite construction, and iv) which biosignatures may be preserved in GS.
NanoBioS aims to address this knowledge gap by employing an interdisciplinary approach to study newly discovered gypsum-based stromatolites from Lake Bakili (Danakil Depression, Ethiopia) from a combined microbiology and mineralogy perspective. The Danakil Depression and the difficult-to-access and so-far unexplored Lake Bakili constitute a unique, natural laboratory for the study of both living and fossil gypsum microbialites, and a terrestrial Martian analogue-site. Besides the possibility to discover novel microbial lineages/metabolisms, we will attempt to identify characteristic associations of microbial groups with mineral assemblages and look for biosignatures. The overarching goal of NanoBioS is to gain a deeper understanding of the microbial influence on Ca-sulfate precipitation, as well as, to develop insights for distinguishing fossil life remnants from inorganic biomorphs on Earth and Martian chemical sediments.
The host and secondment host laboratories that have advanced the subject of geomicrobiology of microbialites, will offer me intensive training in cutting-edge molecular biology and mineralogic tools, complementary to my so far geochemical expertise, aside to other, transferable skills. Overall, the development of NanoBioS will be career-defining and it will transform me in an independent, highly competitive, early stage bio-geo-chemist.

Status

CLOSED

Call topic

MSCA-IF-2020

Update Date

28-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.3. EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions (MSCA)
H2020-EU.1.3.2. Nurturing excellence by means of cross-border and cross-sector mobility
H2020-MSCA-IF-2020
MSCA-IF-2020 Individual Fellowships