Microbots4Enviro | Versatile Micromotors for Photocatalytic Environmental Remediation

Summary
Environmental degradation issue is a global concern. Great efforts have been made to develop efficient and green approaches for wastewater treatment. Self-propelled nano/microrobots are the forefront of nanotechnology, holding great promise for environmental remediation. Visible light driven semiconductor photocatalyst would be the great catalyst to power such micromachines for environmental remediation. BiVO4 has attracted researchers’ great interest. However, its drawbacks such as significant recombination of photogenerated electron–hole pairs, poor electrical conductivity and slow hole transfer kinetics limit its applications. To enhance the photocatalytic efficiency, this project elaborately develops light-responsive tubular micromotors with smart material design strategy: BiVO4 is robust visible light absorber; ZnO nanorod arrays act as electron transfer channel; rGO films function as electron acceptor; and Co-Pi serves as hole acceptor and catalytic site. The Microbots4Enviro project aims to: (i) establish novel tubular Co-Pi/BiVO4/ZnO/rGO micromotors; (ii) study the comprehensive performance of micromotors in the polluted water with three types of contaminant models (i.e. dye, explosive and bacteria model); and (iii) integrate abundant micromotors in 3DP-motor and demonstrate the pilot-scale test in artificial 5×5m2 pool for environmental remediation. This project will bring an experienced researcher, Dr. Huaijuan Zhou to undertake this cutting-edge multidisciplinary research project at UCT Prague in Czech Republic under the supervision of Prof. Martin Pumera, Director of Center for Advanced Functional Nanorobots. This fellowship will not only restart her research career, but also broaden her knowledge and expertise in the emerging area of self-propelled autonomous nano/micromachines. This project contributes to creating a strong scientific and technical base for European science and technology, and fostering the competitiveness and growth of EU economy.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/890741
Start date: 01-07-2020
End date: 30-06-2022
Total budget - Public funding: 156 980,64 Euro - 156 980,00 Euro
Cordis data

Original description

Environmental degradation issue is a global concern. Great efforts have been made to develop efficient and green approaches for wastewater treatment. Self-propelled nano/microrobots are the forefront of nanotechnology, holding great promise for environmental remediation. Visible light driven semiconductor photocatalyst would be the great catalyst to power such micromachines for environmental remediation. BiVO4 has attracted researchers’ great interest. However, its drawbacks such as significant recombination of photogenerated electron–hole pairs, poor electrical conductivity and slow hole transfer kinetics limit its applications. To enhance the photocatalytic efficiency, this project elaborately develops light-responsive tubular micromotors with smart material design strategy: BiVO4 is robust visible light absorber; ZnO nanorod arrays act as electron transfer channel; rGO films function as electron acceptor; and Co-Pi serves as hole acceptor and catalytic site. The Microbots4Enviro project aims to: (i) establish novel tubular Co-Pi/BiVO4/ZnO/rGO micromotors; (ii) study the comprehensive performance of micromotors in the polluted water with three types of contaminant models (i.e. dye, explosive and bacteria model); and (iii) integrate abundant micromotors in 3DP-motor and demonstrate the pilot-scale test in artificial 5×5m2 pool for environmental remediation. This project will bring an experienced researcher, Dr. Huaijuan Zhou to undertake this cutting-edge multidisciplinary research project at UCT Prague in Czech Republic under the supervision of Prof. Martin Pumera, Director of Center for Advanced Functional Nanorobots. This fellowship will not only restart her research career, but also broaden her knowledge and expertise in the emerging area of self-propelled autonomous nano/micromachines. This project contributes to creating a strong scientific and technical base for European science and technology, and fostering the competitiveness and growth of EU economy.

Status

CLOSED

Call topic

MSCA-IF-2019

Update Date

28-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.3. EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions (MSCA)
H2020-EU.1.3.2. Nurturing excellence by means of cross-border and cross-sector mobility
H2020-MSCA-IF-2019
MSCA-IF-2019