SpatialStructure | How does population structure influence host-pathogen dynamics in mosquito-transmitted diseases?

Summary
Computational advancements and the development of powerful agent-based simulation frameworks have allowed us to model unprecedented realism in mosquito-transmitted diseases – a threat that millions of people face every year. While this enhanced realism has already provided important insights, agent-based models are still often outperformed in disease forecasting by their idealized mathematical counterparts. This might be caused by a lack in our fundamental understanding of how spatial dynamics need to be appropriately modeled. To date, in depth sensitivity analyses of complex agent-based models that would help to address this issue are hardly conducted, because these complex models are very parameter rich. Thus, the required model recalibration and comparisons are very runtime intensive. I introduce Gaussian processes as a powerful statistical framework that will significantly advance sensitivity analysis for agent-based models and allow us to assess the relative input importance of different model parameters in unprecedented detail. The proposed research could further deepen our understanding of how spatial structure affects host-pathogen dynamics and be a valuable contribution to the field of sensitivity analysis for agent-based models. I expect to find that spatial structure changes disease transmission potential profoundly and can cause spatial-specific model dynamics. I hope that my findings contribute to the improvement of disease forecasting and evaluation of proposed intervention strategies.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/101025586
Start date: 01-12-2021
End date: 30-11-2024
Total budget - Public funding: 252 349,44 Euro - 252 349,00 Euro
Cordis data

Original description

Computational advancements and the development of powerful agent-based simulation frameworks have allowed us to model unprecedented realism in mosquito-transmitted diseases – a threat that millions of people face every year. While this enhanced realism has already provided important insights, agent-based models are still often outperformed in disease forecasting by their idealized mathematical counterparts. This might be caused by a lack in our fundamental understanding of how spatial dynamics need to be appropriately modeled. To date, in depth sensitivity analyses of complex agent-based models that would help to address this issue are hardly conducted, because these complex models are very parameter rich. Thus, the required model recalibration and comparisons are very runtime intensive. I introduce Gaussian processes as a powerful statistical framework that will significantly advance sensitivity analysis for agent-based models and allow us to assess the relative input importance of different model parameters in unprecedented detail. The proposed research could further deepen our understanding of how spatial structure affects host-pathogen dynamics and be a valuable contribution to the field of sensitivity analysis for agent-based models. I expect to find that spatial structure changes disease transmission potential profoundly and can cause spatial-specific model dynamics. I hope that my findings contribute to the improvement of disease forecasting and evaluation of proposed intervention strategies.

Status

TERMINATED

Call topic

MSCA-IF-2020

Update Date

28-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.3. EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions (MSCA)
H2020-EU.1.3.2. Nurturing excellence by means of cross-border and cross-sector mobility
H2020-MSCA-IF-2020
MSCA-IF-2020 Individual Fellowships