Summary
Elevated local and systemic inflammation has been shown to play a central role in multiple diseases. An important cellular mechanism leading to chronic increased inflammation is dysregulation of the innate immune system. A drug that modulates macrophage function, suppressing the pro-inflammatory response while maintaining pro-repair function would represent a major breakthrough in the treatment of multiple degenerative diseases.
Our host group very recently identified a biased agonist of an immunometabolic receptor, GPR84, which failed to induce chemotaxis (pro-inflammatory response) while stimulating phagocytosis (pro-repair response) in both murine and human macrophage (ACS Chem. Biol. 2019). This is an important discovery of a small molecule along with a defined molecular target and cellular mechanism which, for the first time, is capable of blocking a pro-inflammatory response while stimulating a pre-repair response in both mouse and human macrophage.
These results are extremely exciting and demonstrate the translational potential of our approach, but the small molecule they identified, while a useful in vitro tool which we have shared with the scientific community, cannot be progressed to in vivo proof-of-concept experiments because it is too metabolically unstable. We are therefore applying to the MSCA IF to seek medicinal chemistry support to drive a hit-to-lead project to evolve our small molecule hit into a lead candidate with appropriate properties for progression in vivo to carry out key proof-of-concept experiments in animal models of inflammation. This in vivo efficacy data will be pivotal to underpin a future funding application to support drug discovery and development campaigns.
Our host group very recently identified a biased agonist of an immunometabolic receptor, GPR84, which failed to induce chemotaxis (pro-inflammatory response) while stimulating phagocytosis (pro-repair response) in both murine and human macrophage (ACS Chem. Biol. 2019). This is an important discovery of a small molecule along with a defined molecular target and cellular mechanism which, for the first time, is capable of blocking a pro-inflammatory response while stimulating a pre-repair response in both mouse and human macrophage.
These results are extremely exciting and demonstrate the translational potential of our approach, but the small molecule they identified, while a useful in vitro tool which we have shared with the scientific community, cannot be progressed to in vivo proof-of-concept experiments because it is too metabolically unstable. We are therefore applying to the MSCA IF to seek medicinal chemistry support to drive a hit-to-lead project to evolve our small molecule hit into a lead candidate with appropriate properties for progression in vivo to carry out key proof-of-concept experiments in animal models of inflammation. This in vivo efficacy data will be pivotal to underpin a future funding application to support drug discovery and development campaigns.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: | https://cordis.europa.eu/project/id/101026581 |
Start date: | 05-07-2021 |
End date: | 04-07-2023 |
Total budget - Public funding: | 224 933,76 Euro - 224 933,00 Euro |
Cordis data
Original description
Elevated local and systemic inflammation has been shown to play a central role in multiple diseases. An important cellular mechanism leading to chronic increased inflammation is dysregulation of the innate immune system. A drug that modulates macrophage function, suppressing the pro-inflammatory response while maintaining pro-repair function would represent a major breakthrough in the treatment of multiple degenerative diseases.Our host group very recently identified a biased agonist of an immunometabolic receptor, GPR84, which failed to induce chemotaxis (pro-inflammatory response) while stimulating phagocytosis (pro-repair response) in both murine and human macrophage (ACS Chem. Biol. 2019). This is an important discovery of a small molecule along with a defined molecular target and cellular mechanism which, for the first time, is capable of blocking a pro-inflammatory response while stimulating a pre-repair response in both mouse and human macrophage.
These results are extremely exciting and demonstrate the translational potential of our approach, but the small molecule they identified, while a useful in vitro tool which we have shared with the scientific community, cannot be progressed to in vivo proof-of-concept experiments because it is too metabolically unstable. We are therefore applying to the MSCA IF to seek medicinal chemistry support to drive a hit-to-lead project to evolve our small molecule hit into a lead candidate with appropriate properties for progression in vivo to carry out key proof-of-concept experiments in animal models of inflammation. This in vivo efficacy data will be pivotal to underpin a future funding application to support drug discovery and development campaigns.
Status
CLOSEDCall topic
MSCA-IF-2020Update Date
28-04-2024
Images
No images available.
Geographical location(s)
Structured mapping