PIGGY | Reasoning using tangles on parity games

Summary
Virtually all aspects of society, industry and science are significantly impacted by increasingly complex computers and the software that they run. A major objective within computer science is to ensure that these computer systems are formally correct by developing ways to prove that a system correctly implements certain given properties, or ways to construct such a system. In this domain of computer science, an important topic is parity games. Many real-world systems run continuously and properties for such systems are described in temporal logics such as linear temporal logic (LTL) and various logics derived from or related to LTL. Solving parity games computes whether a given system has a property specified in these temporal logics, or constructs a system that implements such a property.

Parity games are in addition a compelling subject for theoretical computer science because they are believed to be in the complexity class P; however, this has been an open question for over 20 years. In recent years, new algorithms have been discovered that solve parity games in quasi-polynomial time, while at the same time researchers have found quasi-polynomial lower bounds for several families of algorithms.In my publication on tangle learning, I propose the notion of a tangle and show that existing parity game solving algorithm implicitly explore tangles when reasoning about how a player can force the opponent to move through the parity game from A to B.

The aim of this proposal is to understand the inherent complexity of solving parity games algorithmically. The strategy to achieve this is to obtain fundamental insights into the structure of tangles, how they are handled by parity game solving algorithms and how they arise in practical games.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/893732
Start date: 01-04-2020
End date: 31-03-2022
Total budget - Public funding: 175 572,48 Euro - 175 572,00 Euro
Cordis data

Original description

Virtually all aspects of society, industry and science are significantly impacted by increasingly complex computers and the software that they run. A major objective within computer science is to ensure that these computer systems are formally correct by developing ways to prove that a system correctly implements certain given properties, or ways to construct such a system. In this domain of computer science, an important topic is parity games. Many real-world systems run continuously and properties for such systems are described in temporal logics such as linear temporal logic (LTL) and various logics derived from or related to LTL. Solving parity games computes whether a given system has a property specified in these temporal logics, or constructs a system that implements such a property.

Parity games are in addition a compelling subject for theoretical computer science because they are believed to be in the complexity class P; however, this has been an open question for over 20 years. In recent years, new algorithms have been discovered that solve parity games in quasi-polynomial time, while at the same time researchers have found quasi-polynomial lower bounds for several families of algorithms.In my publication on tangle learning, I propose the notion of a tangle and show that existing parity game solving algorithm implicitly explore tangles when reasoning about how a player can force the opponent to move through the parity game from A to B.

The aim of this proposal is to understand the inherent complexity of solving parity games algorithmically. The strategy to achieve this is to obtain fundamental insights into the structure of tangles, how they are handled by parity game solving algorithms and how they arise in practical games.

Status

CLOSED

Call topic

MSCA-IF-2019

Update Date

28-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.3. EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions (MSCA)
H2020-EU.1.3.2. Nurturing excellence by means of cross-border and cross-sector mobility
H2020-MSCA-IF-2019
MSCA-IF-2019