HEASeRS | High-temperature angular-selective radiant surfaces for the de-carbonisation of energy intensive industries.

Summary
Energy Intensive Industries (EII) heavily rely on High-Temperature Processes (HTP), notoriously hard to de-carbonise. To meet its carbon neutrality goal, Europe will need to increase the share or dispatchable renewable electricity on the grid and significantly increase the efficiency and electrification of HTP, particularly via electric heating. At high-temperatures, radiation is the dominant heat transfer mode. There are very few technological options available to improve and control the radiative properties of materials able to survive the aggressive oxidation and thermomechanical stresses that occur in HTP. The lack of radiative control reduces the energy efficiency and electrification potential of HTP.
The HEASeRS (High-tEmperature Angular-Selective Radiant Surfaces) project explores an innovative approach to spectro-angular radiation control based on the modification of the surface geometry of industrially relevant high-temperature materials at multiple length scales: surface roughness, meso-structures and macro-scale system geometry optimisation. This approach is generally applicable to all HTP and exempt of most of the limitations of existing design paradigms. The findings are applied to a series of proof-of-concept designs targeting innovations in the design of efficient heat exchangers, radiant furnaces, and Concentrated Solar Power (CSP) receivers. CSP is a promising renewable energy technology that can potentially supply high-temperature heat and electricity on demand; and shares many similarities with HTP.
The 24 months research, based at IME (Madrid, Spain) with a secondment at LTeN (Nantes, France), involves a combination of detailed numerical modelling of radiative heat transfers and experimental activities. Industrial relevance, at the core of the research objectives, is promoted through bi-annual project newsletters featuring interviews of EII, technology providers and researchers; and a intersectoral workshop at the end of the action.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/101027316
Start date: 15-11-2021
End date: 17-03-2024
Total budget - Public funding: 160 932,48 Euro - 160 932,00 Euro
Cordis data

Original description

Energy Intensive Industries (EII) heavily rely on High-Temperature Processes (HTP), notoriously hard to de-carbonise. To meet its carbon neutrality goal, Europe will need to increase the share or dispatchable renewable electricity on the grid and significantly increase the efficiency and electrification of HTP, particularly via electric heating. At high-temperatures, radiation is the dominant heat transfer mode. There are very few technological options available to improve and control the radiative properties of materials able to survive the aggressive oxidation and thermomechanical stresses that occur in HTP. The lack of radiative control reduces the energy efficiency and electrification potential of HTP.
The HEASeRS (High-tEmperature Angular-Selective Radiant Surfaces) project explores an innovative approach to spectro-angular radiation control based on the modification of the surface geometry of industrially relevant high-temperature materials at multiple length scales: surface roughness, meso-structures and macro-scale system geometry optimisation. This approach is generally applicable to all HTP and exempt of most of the limitations of existing design paradigms. The findings are applied to a series of proof-of-concept designs targeting innovations in the design of efficient heat exchangers, radiant furnaces, and Concentrated Solar Power (CSP) receivers. CSP is a promising renewable energy technology that can potentially supply high-temperature heat and electricity on demand; and shares many similarities with HTP.
The 24 months research, based at IME (Madrid, Spain) with a secondment at LTeN (Nantes, France), involves a combination of detailed numerical modelling of radiative heat transfers and experimental activities. Industrial relevance, at the core of the research objectives, is promoted through bi-annual project newsletters featuring interviews of EII, technology providers and researchers; and a intersectoral workshop at the end of the action.

Status

CLOSED

Call topic

MSCA-IF-2020

Update Date

28-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.3. EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions (MSCA)
H2020-EU.1.3.2. Nurturing excellence by means of cross-border and cross-sector mobility
H2020-MSCA-IF-2020
MSCA-IF-2020 Individual Fellowships