ThermalDFT | Density-Functional Theory for Thermoelectric Phenomena

Summary
The development of sustainable energy sources poses a great challenge for our society. Due to the scarcity of natural resources it is of crucial importance to optimize the efficiency of our energy production. Virtually every energy generation process is accompanied with the generation of waste heat, for example in the form of plumes from power plants. Even if only part of this waste heat is transformed into useful energy the overall efficiency of energy production is increased. In recent years there has been renewed interest in thermoelectric phenomena, due to their potential impact on designing new devices capable of converting waste heat into electricity. Furthermore, it has become evident that nanoscale devices, which implement their functionality at the level of single molecules, potentially offer a much enhanced efficiency for the conversion of heat to electricity compared to bulk materials.
This project aims at providing the necessary tools to describe the efficiency of nanoscale thermoelectric devices based on their microscopic structure. To this end a density-functional theory (DFT), dubbed thermal DFT, is developed. The innovation of thermal DFT is to address charge and energy (or heat) degree of freedoms on the same footing, which is crucial for addressing thermoelectric phenomena. It will allow to predict the thermoelectric properties of molecular devices by numerical simulations. This can dramatically reduce the money and time spent in the experimental search for highly efficient thermoelectric devices by selecting materials with promising thermoelectric transport coefficients. Within this project the approximations required for a numerical implementation of the theoretical thermal DFT framework are derived. In addition, thermal DFT will be numerically implemented and benchmarked against available experimental data on the thermoelectric transport coefficients of molecular junctions.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/701796
Start date: 15-10-2016
End date: 14-10-2018
Total budget - Public funding: 159 460,80 Euro - 159 460,00 Euro
Cordis data

Original description

The development of sustainable energy sources poses a great challenge for our society. Due to the scarcity of natural resources it is of crucial importance to optimize the efficiency of our energy production. Virtually every energy generation process is accompanied with the generation of waste heat, for example in the form of plumes from power plants. Even if only part of this waste heat is transformed into useful energy the overall efficiency of energy production is increased. In recent years there has been renewed interest in thermoelectric phenomena, due to their potential impact on designing new devices capable of converting waste heat into electricity. Furthermore, it has become evident that nanoscale devices, which implement their functionality at the level of single molecules, potentially offer a much enhanced efficiency for the conversion of heat to electricity compared to bulk materials.
This project aims at providing the necessary tools to describe the efficiency of nanoscale thermoelectric devices based on their microscopic structure. To this end a density-functional theory (DFT), dubbed thermal DFT, is developed. The innovation of thermal DFT is to address charge and energy (or heat) degree of freedoms on the same footing, which is crucial for addressing thermoelectric phenomena. It will allow to predict the thermoelectric properties of molecular devices by numerical simulations. This can dramatically reduce the money and time spent in the experimental search for highly efficient thermoelectric devices by selecting materials with promising thermoelectric transport coefficients. Within this project the approximations required for a numerical implementation of the theoretical thermal DFT framework are derived. In addition, thermal DFT will be numerically implemented and benchmarked against available experimental data on the thermoelectric transport coefficients of molecular junctions.

Status

CLOSED

Call topic

MSCA-IF-2015-EF

Update Date

28-04-2024
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
EU-Programme-Call
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.3. EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions (MSCA)
H2020-EU.1.3.2. Nurturing excellence by means of cross-border and cross-sector mobility
H2020-MSCA-IF-2015
MSCA-IF-2015-EF Marie Skłodowska-Curie Individual Fellowships (IF-EF)