DN-CARTILOGEL | Design of double network polycarbonate-based hydrogels by simultaneous reactions: scaffolds for load-bearing soft tissue regeneration

Summary
Polymer materials have outstanding properties with which to be applied for a wide range of applications. In particular, hydrogel materials are widely studied for applications in tissue engineering on account of their high water contents. Despite the advances in these materials, some biomedical targets remain challenging. Articular cartilage (AC) is the white flexible load-bearing soft tissue able to withstand the highest loads in physically demanding areas of the body. Once it is damaged, its poor ability for self-repair may induce a progressive loss of function that, ultimately, results in a severe musculoskeletal degenerative condition. While most commonly used hydrogel fabrication techniques still have practical limitations or do not lead to materials that are sufficiently strong for AC regeneration, the DN-Cartilogel project proposes the preparation of innovative tough, double network hydrogel materials that are based on advanced hydrophilic poly(carbonate)s. The tailored design of polymers with specific side-chain and end group functionalities will lead to hydrogel materials with improved mechanical strength, toughness and high water content. To this end, the project will apply the one-step synthetic methodology based on orthogonal click chemistry that was reported recently by the host group to generate novel and highly tunable materials. The ultimate goal is to develop a straightforward path to design robust DN hydrogels able to induce the differentiation of mesenchymal stem cells into specialized cartilage-producing cells, which directly addresses priorities established by the H2020 Work Programme.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/703415
Start date: 12-09-2016
End date: 11-09-2018
Total budget - Public funding: 183 454,81 Euro - 183 454,00 Euro
Cordis data

Original description

Polymer materials have outstanding properties with which to be applied for a wide range of applications. In particular, hydrogel materials are widely studied for applications in tissue engineering on account of their high water contents. Despite the advances in these materials, some biomedical targets remain challenging. Articular cartilage (AC) is the white flexible load-bearing soft tissue able to withstand the highest loads in physically demanding areas of the body. Once it is damaged, its poor ability for self-repair may induce a progressive loss of function that, ultimately, results in a severe musculoskeletal degenerative condition. While most commonly used hydrogel fabrication techniques still have practical limitations or do not lead to materials that are sufficiently strong for AC regeneration, the DN-Cartilogel project proposes the preparation of innovative tough, double network hydrogel materials that are based on advanced hydrophilic poly(carbonate)s. The tailored design of polymers with specific side-chain and end group functionalities will lead to hydrogel materials with improved mechanical strength, toughness and high water content. To this end, the project will apply the one-step synthetic methodology based on orthogonal click chemistry that was reported recently by the host group to generate novel and highly tunable materials. The ultimate goal is to develop a straightforward path to design robust DN hydrogels able to induce the differentiation of mesenchymal stem cells into specialized cartilage-producing cells, which directly addresses priorities established by the H2020 Work Programme.

Status

CLOSED

Call topic

MSCA-IF-2015-EF

Update Date

28-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.3. EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions (MSCA)
H2020-EU.1.3.2. Nurturing excellence by means of cross-border and cross-sector mobility
H2020-MSCA-IF-2015
MSCA-IF-2015-EF Marie Skłodowska-Curie Individual Fellowships (IF-EF)