Summary
CoSolCat is based on a new surfactant-free colloidal synthesis of precious metal nanoparticles developed and patented by the experienced researcher Dr J. Quinson. The technology has attracted interest from industries and a start-up has been created, yet is in its very early stages. Further research is required to fully seize and position the technology as a new state–of –the –art method to produce precious metal nanocatalysts.
The objectives of CoSolCat are to study in detail and develop further surfactant-free syntheses of precious metal-based nanoparticles to be used as catalysts with enhanced performances for the production of valuable chemicals and energy applications.
By combining world-leading expertise from the University of Copenhagen (Assistant-Professor Maria Escudero Escribano), Stanford (Assistant Professor Matteo Cargnello), a start-up and his own experience, Dr J. Quinson will produce, study, characterise, compare and so benchmark nanocatalysts obtained by the technology he patented, new routes to-be-developed in the project, and state-of-the art methods.
This will provide a deeper understanding of the production and properties of precious metal catalysts while the new technology will be more controlled and optimised to a degree relevant for industry. E.g. bi-metallic nanoparticles comprising a non-precious metal will be developed for the first time with new surfactant-free approaches and studied for model hydrogenation reactions. This research will lead to sustainable and affordable catalysts with improved selectivity.
The expertise gained by the applicant will (1) help to mature the technology, (2) develop a new pool of competences in heterogeneous catalysis in Europe, (3) provide expertise in industrially relevant production of catalysts suitable for a range of chemical productions and energy conversion reactions. The proposal is then directly relevant to provide world leading expertise in Europe for a green and more sustainable economy.
The objectives of CoSolCat are to study in detail and develop further surfactant-free syntheses of precious metal-based nanoparticles to be used as catalysts with enhanced performances for the production of valuable chemicals and energy applications.
By combining world-leading expertise from the University of Copenhagen (Assistant-Professor Maria Escudero Escribano), Stanford (Assistant Professor Matteo Cargnello), a start-up and his own experience, Dr J. Quinson will produce, study, characterise, compare and so benchmark nanocatalysts obtained by the technology he patented, new routes to-be-developed in the project, and state-of-the art methods.
This will provide a deeper understanding of the production and properties of precious metal catalysts while the new technology will be more controlled and optimised to a degree relevant for industry. E.g. bi-metallic nanoparticles comprising a non-precious metal will be developed for the first time with new surfactant-free approaches and studied for model hydrogenation reactions. This research will lead to sustainable and affordable catalysts with improved selectivity.
The expertise gained by the applicant will (1) help to mature the technology, (2) develop a new pool of competences in heterogeneous catalysis in Europe, (3) provide expertise in industrially relevant production of catalysts suitable for a range of chemical productions and energy conversion reactions. The proposal is then directly relevant to provide world leading expertise in Europe for a green and more sustainable economy.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: | https://cordis.europa.eu/project/id/840523 |
Start date: | 01-05-2020 |
End date: | 30-04-2023 |
Total budget - Public funding: | 268 921,92 Euro - 268 921,00 Euro |
Cordis data
Original description
CoSolCat is based on a new surfactant-free colloidal synthesis of precious metal nanoparticles developed and patented by the experienced researcher Dr J. Quinson. The technology has attracted interest from industries and a start-up has been created, yet is in its very early stages. Further research is required to fully seize and position the technology as a new state–of –the –art method to produce precious metal nanocatalysts.The objectives of CoSolCat are to study in detail and develop further surfactant-free syntheses of precious metal-based nanoparticles to be used as catalysts with enhanced performances for the production of valuable chemicals and energy applications.
By combining world-leading expertise from the University of Copenhagen (Assistant-Professor Maria Escudero Escribano), Stanford (Assistant Professor Matteo Cargnello), a start-up and his own experience, Dr J. Quinson will produce, study, characterise, compare and so benchmark nanocatalysts obtained by the technology he patented, new routes to-be-developed in the project, and state-of-the art methods.
This will provide a deeper understanding of the production and properties of precious metal catalysts while the new technology will be more controlled and optimised to a degree relevant for industry. E.g. bi-metallic nanoparticles comprising a non-precious metal will be developed for the first time with new surfactant-free approaches and studied for model hydrogenation reactions. This research will lead to sustainable and affordable catalysts with improved selectivity.
The expertise gained by the applicant will (1) help to mature the technology, (2) develop a new pool of competences in heterogeneous catalysis in Europe, (3) provide expertise in industrially relevant production of catalysts suitable for a range of chemical productions and energy conversion reactions. The proposal is then directly relevant to provide world leading expertise in Europe for a green and more sustainable economy.
Status
TERMINATEDCall topic
MSCA-IF-2018Update Date
28-04-2024
Images
No images available.
Geographical location(s)