ADMAIR | Area-selective Deposition-enabled ultiMAte extensIon of lithogRaphy

Summary
Nanopatterning is the core of today’s and future semiconductor technology as it drives the downscaling of the devices below the 7 nm node, enabling higher speed, density of transistors and computing performance. In addition, nanofabricated three-dimensional patterned structures are used in devices for photonics, biotechnology and other forms of nanotechnology.[1]Beyond the 10nm node, extreme ultraviolet lithography (EUVL) with a light source of 13.5 nm, will be applied.[2],[3] Associated with nano-patterning at these dimensions, there is a long list of challenges: i) EUVL photoresists (PR) and mask infrastructure and control of the created nanoscale patterns; ii) throughput and process cost; iii) environmental footprint as it is based on litho-etch subtractive processes; iv) high complexity thus decreasing fabrication reliability; v) overlay errors and defectivity. Therefore, innovative solutions are required. Area selective deposition (ASD) offers the potential to relax downstream processing steps by enabling self-aligned processes and bottom-up lithography.
The main goal of this MSCA proposal Area-selective Deposition-enabled ultiMAte extensIon of lithogRaphy (ADMAIR) is to overcome the potentially show-stopping challenges associated with EUV materials and processes at the sub-10nm scale by an additive bottom-up concept. This will be enabled by interdisciplinary joint development projects involving material suppliers and lithography stakeholders, which is a unique advantage of IMEC and will complement the expertise of the candidate in material science and characterization. Ultimately, valuable professional development opportunities for the MSCA candidate and know-how for the host will be achieved.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/896731
Start date: 01-06-2020
End date: 31-05-2022
Total budget - Public funding: 166 320,00 Euro - 166 320,00 Euro
Cordis data

Original description

Nanopatterning is the core of today’s and future semiconductor technology as it drives the downscaling of the devices below the 7 nm node, enabling higher speed, density of transistors and computing performance. In addition, nanofabricated three-dimensional patterned structures are used in devices for photonics, biotechnology and other forms of nanotechnology.[1]Beyond the 10nm node, extreme ultraviolet lithography (EUVL) with a light source of 13.5 nm, will be applied.[2],[3] Associated with nano-patterning at these dimensions, there is a long list of challenges: i) EUVL photoresists (PR) and mask infrastructure and control of the created nanoscale patterns; ii) throughput and process cost; iii) environmental footprint as it is based on litho-etch subtractive processes; iv) high complexity thus decreasing fabrication reliability; v) overlay errors and defectivity. Therefore, innovative solutions are required. Area selective deposition (ASD) offers the potential to relax downstream processing steps by enabling self-aligned processes and bottom-up lithography.
The main goal of this MSCA proposal Area-selective Deposition-enabled ultiMAte extensIon of lithogRaphy (ADMAIR) is to overcome the potentially show-stopping challenges associated with EUV materials and processes at the sub-10nm scale by an additive bottom-up concept. This will be enabled by interdisciplinary joint development projects involving material suppliers and lithography stakeholders, which is a unique advantage of IMEC and will complement the expertise of the candidate in material science and characterization. Ultimately, valuable professional development opportunities for the MSCA candidate and know-how for the host will be achieved.

Status

CLOSED

Call topic

MSCA-IF-2019

Update Date

28-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.3. EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions (MSCA)
H2020-EU.1.3.2. Nurturing excellence by means of cross-border and cross-sector mobility
H2020-MSCA-IF-2019
MSCA-IF-2019