Summary
Deterministic nonlinear operations between single photons that are at the heart of numerous quantum information protocols require strong interactions between photons and quantum emitters. By combining cold atoms and slow-mode photonic-crystal waveguides, the goal of this project is to develop a novel platform to implement such operations by strongly coupling a photon with atomic ensembles in single pass, that is without the use of an optical cavity. Transverse optical confinement and slow group velocity are the key ingredients in this novel waveguide-QED approach, with applications in integrated quantum technologies, quantum non-linear optics and state engineering. This platform, based on a new and promising combination of photonic-crystal geometry (W1) and material (GaInP) will not only provide superior figures of merit and scalability than in free-space implementations, but also tailored functionalities not achievable in current physical interfaces. This project uniquely combines atomic physics, quantum optics and nanophotonics and will ideally prepare the applicant for a future career as an independent research group leader.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: | https://cordis.europa.eu/project/id/101030421 |
Start date: | 01-03-2021 |
End date: | 28-02-2023 |
Total budget - Public funding: | 184 707,84 Euro - 184 707,00 Euro |
Cordis data
Original description
Deterministic nonlinear operations between single photons that are at the heart of numerous quantum information protocols require strong interactions between photons and quantum emitters. By combining cold atoms and slow-mode photonic-crystal waveguides, the goal of this project is to develop a novel platform to implement such operations by strongly coupling a photon with atomic ensembles in single pass, that is without the use of an optical cavity. Transverse optical confinement and slow group velocity are the key ingredients in this novel waveguide-QED approach, with applications in integrated quantum technologies, quantum non-linear optics and state engineering. This platform, based on a new and promising combination of photonic-crystal geometry (W1) and material (GaInP) will not only provide superior figures of merit and scalability than in free-space implementations, but also tailored functionalities not achievable in current physical interfaces. This project uniquely combines atomic physics, quantum optics and nanophotonics and will ideally prepare the applicant for a future career as an independent research group leader.Status
TERMINATEDCall topic
MSCA-IF-2020Update Date
28-04-2024
Images
No images available.
Geographical location(s)
Structured mapping