ARCATOM | Exploring the role of the mitochondrial alternative respiration in carotenoid biosynthesis during tomato fruit ripening

Summary
Tomato is one of the most economically relevant crops in the world and is the main model system for fruit ripening studies at biochemical, genetic and molecular levels. In this climacteric fruit, a sudden increase in respiration takes place at the onset of ripening, usually in concert with increased production of ethylene that eventually impacts fruit color, firmness, taste, and flavor. During ripening, tomato accumulates high contents of health-promoting carotenoids (pro-vitamin A, antioxidants), which require a high production of carbon precursors and ATP. In this respect, both mitochondrial and chromoplast respiration have been proposed to play important roles in fruit ripening and carotenoid metabolism. The general aim of this project is to determine the contribution of mitochondrial respiration to the supply of energy and carbon for the production of carotenoids in tomato fruit during ripening. In particular, we will perform metabolomics of genetically modified tomatoes with altered mitochondrial and chromoplast respiration at different ripening stages. Furthermore, 13C- and 14C-labelling experiments will be performed to trace the fate of carbon from primary to secondary metabolites. In parallel, we will measure the relative glycolytic and TCA cycle fluxes and, for the first time in tomato, the in vivo activities of mitochondrial electron transport chain pathways by using the 18O fractionation technique. Combining these data with the analysis of transcript and protein levels of the main components of respiratory and carotenoid pathways and mathematical modelling will unveil novel metabolic checkpoints and connections between primary and secondary metabolism during fruit ripening. The generated new insights should contribute to the implementation of new biotechnological approaches to produce fruits with enhanced levels of carotenoids and other health-promoting secondary metabolites.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/753301
Start date: 01-10-2018
End date: 15-12-2020
Total budget - Public funding: 170 121,60 Euro - 170 121,00 Euro
Cordis data

Original description

Tomato is one of the most economically relevant crops in the world and is the main model system for fruit ripening studies at biochemical, genetic and molecular levels. In this climacteric fruit, a sudden increase in respiration takes place at the onset of ripening, usually in concert with increased production of ethylene that eventually impacts fruit color, firmness, taste, and flavor. During ripening, tomato accumulates high contents of health-promoting carotenoids (pro-vitamin A, antioxidants), which require a high production of carbon precursors and ATP. In this respect, both mitochondrial and chromoplast respiration have been proposed to play important roles in fruit ripening and carotenoid metabolism. The general aim of this project is to determine the contribution of mitochondrial respiration to the supply of energy and carbon for the production of carotenoids in tomato fruit during ripening. In particular, we will perform metabolomics of genetically modified tomatoes with altered mitochondrial and chromoplast respiration at different ripening stages. Furthermore, 13C- and 14C-labelling experiments will be performed to trace the fate of carbon from primary to secondary metabolites. In parallel, we will measure the relative glycolytic and TCA cycle fluxes and, for the first time in tomato, the in vivo activities of mitochondrial electron transport chain pathways by using the 18O fractionation technique. Combining these data with the analysis of transcript and protein levels of the main components of respiratory and carotenoid pathways and mathematical modelling will unveil novel metabolic checkpoints and connections between primary and secondary metabolism during fruit ripening. The generated new insights should contribute to the implementation of new biotechnological approaches to produce fruits with enhanced levels of carotenoids and other health-promoting secondary metabolites.

Status

CLOSED

Call topic

MSCA-IF-2016

Update Date

28-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.3. EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions (MSCA)
H2020-EU.1.3.2. Nurturing excellence by means of cross-border and cross-sector mobility
H2020-MSCA-IF-2016
MSCA-IF-2016