Oncogenic PI3-kinase | New biology of oncogenic PI 3-kinase

Summary
PI 3-kinase (PI3K) signalling regulates multiple cell functions and is one of the most frequently genetically-activated pathways in cancer. This is mainly due to activating mutations in PIK3CA (the gene encoding the PI3Kα catalytic subunit) or inactivation of the tumour-suppressor PTEN (which opposes PI3K signalling).

Solid tumours are most often hypoxic and nutrient-starved. The central premise of my proposal is that PI3K signalling has thus far been predominantly investigated under experimental settings not representative of these cancer-relevant tissue contexts. In our view, this has resulted in an incomplete understanding of PI3K biology in cancer. Based on this assertion, I have formulated two key objectives:
(1) To uncover previously-unappreciated signalling mechanisms of oncogenic PIK3CA under cancer-relevant conditions of long-term starvation and/or hypoxia.
(2) To understand the mechanism of cell death induced by an innovative, new type of PI3K modulators, generated by the Host Lab, that kill PIK3CA-mutant cancer cells under hypoxic conditions.

These objectives will be achieved by, respectively:
(1) Biased and unbiased genetic and pharmacological approaches in cells and mice, including probing signalling under conditions of (A) nutrient and/or oxygen starvation (B) sustained low-level signalling due to genetic PIK3CA activation in the heterozygous state and from the endogenous promotor, as is the case in cancer.
(2) Using unique small-molecule PI3K pathway modulators developed in the Host Lab, in cell-biological and signalling studies.

These objectives will merge my expertise in signalling under nutrient-starved conditions with world-class know-how in PI3K cancer studies and drug development in the Host Lab. This proposal aims to make scientific breakthroughs in understanding cancer-related PI3K signalling, promoting the progression of my career and allowing the Host Lab to achieve its key long-term aim to make PI3K-based cancer therapies work.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/838559
Start date: 01-05-2019
End date: 30-04-2021
Total budget - Public funding: 212 933,76 Euro - 212 933,00 Euro
Cordis data

Original description

PI 3-kinase (PI3K) signalling regulates multiple cell functions and is one of the most frequently genetically-activated pathways in cancer. This is mainly due to activating mutations in PIK3CA (the gene encoding the PI3Kα catalytic subunit) or inactivation of the tumour-suppressor PTEN (which opposes PI3K signalling).

Solid tumours are most often hypoxic and nutrient-starved. The central premise of my proposal is that PI3K signalling has thus far been predominantly investigated under experimental settings not representative of these cancer-relevant tissue contexts. In our view, this has resulted in an incomplete understanding of PI3K biology in cancer. Based on this assertion, I have formulated two key objectives:
(1) To uncover previously-unappreciated signalling mechanisms of oncogenic PIK3CA under cancer-relevant conditions of long-term starvation and/or hypoxia.
(2) To understand the mechanism of cell death induced by an innovative, new type of PI3K modulators, generated by the Host Lab, that kill PIK3CA-mutant cancer cells under hypoxic conditions.

These objectives will be achieved by, respectively:
(1) Biased and unbiased genetic and pharmacological approaches in cells and mice, including probing signalling under conditions of (A) nutrient and/or oxygen starvation (B) sustained low-level signalling due to genetic PIK3CA activation in the heterozygous state and from the endogenous promotor, as is the case in cancer.
(2) Using unique small-molecule PI3K pathway modulators developed in the Host Lab, in cell-biological and signalling studies.

These objectives will merge my expertise in signalling under nutrient-starved conditions with world-class know-how in PI3K cancer studies and drug development in the Host Lab. This proposal aims to make scientific breakthroughs in understanding cancer-related PI3K signalling, promoting the progression of my career and allowing the Host Lab to achieve its key long-term aim to make PI3K-based cancer therapies work.

Status

CLOSED

Call topic

MSCA-IF-2018

Update Date

28-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.3. EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions (MSCA)
H2020-EU.1.3.2. Nurturing excellence by means of cross-border and cross-sector mobility
H2020-MSCA-IF-2018
MSCA-IF-2018