ReSOLeS | New Reconfigurable Spectrum Optical Fibre Laser Sources

Summary
Optical lasers are extraordinary light sources that have revolutionized human lives. These are crucial for optical fibre sensor (OFS) interrogation systems. Thus, the characteristics of each source are strongly connected to its sensor system. In large monitoring systems, different OFS are multiplexed in the same optical network. Hence, it exists an increasing necessity of new and special light sources for the new networking requirements. The project aims to develop a revolutionary laser system for high performance remote multiplexing sensor networks for Sustainable Development and Smart Cities applications. The project “ReSOLeS” mainly focus on the research and development of a novel reconfigurable spectrum optical fiber laser source. It is based on the random distributed feedback (RDFB) effect. The modeless characteristic of RDFB lasers allows controlling the emitted frequencies by the internal modulation of the distributed laser cavity, which the applicant first demonstrated. To date, laser spectrum were modified only by filtering the cavity. In this project, we propose an innovative approach that uses a modulating signal to control the output spectrum. This enable higher spectral flexibility and reconfigurability speed than the traditional filtered laser cavities. To make it possible, first, we will develop a model of the system and that will be implemented by software. Next, the system will be experimentally demonstrated and two system enhancements will be tested. Finally, it will be validated in high performance optical fiber sensor networks for Smart Cities applications. This interdisciplinary project will combine the fellow’s expertise in RDFB lasers with the world-leading expertise of the host’s Smart Cities Institute in fiber lasers, OFSs and Smart Cities. In addition, “ReSOLeS” will benefit from the host’s well-established partnerships in academia and industry, and from the training and mentoring opportunities for the fellow's career development.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/838143
Start date: 01-05-2019
End date: 30-04-2021
Total budget - Public funding: 172 932,48 Euro - 172 932,00 Euro
Cordis data

Original description

Optical lasers are extraordinary light sources that have revolutionized human lives. These are crucial for optical fibre sensor (OFS) interrogation systems. Thus, the characteristics of each source are strongly connected to its sensor system. In large monitoring systems, different OFS are multiplexed in the same optical network. Hence, it exists an increasing necessity of new and special light sources for the new networking requirements. The project aims to develop a revolutionary laser system for high performance remote multiplexing sensor networks for Sustainable Development and Smart Cities applications. The project “ReSOLeS” mainly focus on the research and development of a novel reconfigurable spectrum optical fiber laser source. It is based on the random distributed feedback (RDFB) effect. The modeless characteristic of RDFB lasers allows controlling the emitted frequencies by the internal modulation of the distributed laser cavity, which the applicant first demonstrated. To date, laser spectrum were modified only by filtering the cavity. In this project, we propose an innovative approach that uses a modulating signal to control the output spectrum. This enable higher spectral flexibility and reconfigurability speed than the traditional filtered laser cavities. To make it possible, first, we will develop a model of the system and that will be implemented by software. Next, the system will be experimentally demonstrated and two system enhancements will be tested. Finally, it will be validated in high performance optical fiber sensor networks for Smart Cities applications. This interdisciplinary project will combine the fellow’s expertise in RDFB lasers with the world-leading expertise of the host’s Smart Cities Institute in fiber lasers, OFSs and Smart Cities. In addition, “ReSOLeS” will benefit from the host’s well-established partnerships in academia and industry, and from the training and mentoring opportunities for the fellow's career development.

Status

TERMINATED

Call topic

MSCA-IF-2018

Update Date

28-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.3. EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions (MSCA)
H2020-EU.1.3.2. Nurturing excellence by means of cross-border and cross-sector mobility
H2020-MSCA-IF-2018
MSCA-IF-2018