Summary
The aim of this project is to consider X a smooth projective algebraic curve and a representation ρ of π1(X) into a semisimple Lie group G, and study deformations of ρ when X deforms into a singular curve. This question will open a brand new direction in the theory of representations of fundamental groups and G-Higgs bundles. The main tool to approach the problem will be non- abelian Hodge theory to transform this topological question into the geometric one. Then we use recent new developments in the classification of representations together with new algebraic objects which recently appear in non-abelian Hodge theory to study this question. It will take us to the study the deformations of G-Higgs bundles together with deformations of harmonic bundles over X when X is a curve and varies.
This project will allow the researcher to broaden her area of expertise as well as to develop new directions in her research lines. She will complement her knowledge in differential geometry in one of the most prestigious Universities and under the guidance of one of the worldwide leaders in this field.
This project will allow the researcher to broaden her area of expertise as well as to develop new directions in her research lines. She will complement her knowledge in differential geometry in one of the most prestigious Universities and under the guidance of one of the worldwide leaders in this field.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: | https://cordis.europa.eu/project/id/654490 |
Start date: | 01-01-2016 |
End date: | 31-12-2016 |
Total budget - Public funding: | 91 727,40 Euro - 91 727,00 Euro |
Cordis data
Original description
The aim of this project is to consider X a smooth projective algebraic curve and a representation ρ of π1(X) into a semisimple Lie group G, and study deformations of ρ when X deforms into a singular curve. This question will open a brand new direction in the theory of representations of fundamental groups and G-Higgs bundles. The main tool to approach the problem will be non- abelian Hodge theory to transform this topological question into the geometric one. Then we use recent new developments in the classification of representations together with new algebraic objects which recently appear in non-abelian Hodge theory to study this question. It will take us to the study the deformations of G-Higgs bundles together with deformations of harmonic bundles over X when X is a curve and varies.This project will allow the researcher to broaden her area of expertise as well as to develop new directions in her research lines. She will complement her knowledge in differential geometry in one of the most prestigious Universities and under the guidance of one of the worldwide leaders in this field.
Status
CLOSEDCall topic
MSCA-IF-2014-EFUpdate Date
28-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all