NanoSurf | Development of New Nanotechnology Strategies for Surface Disinfection/Decontamination

Summary
In the next 50 years, an estimated 10 billion people will require food but microbial spoilage cause more than 50% of all fruits and vegetables to go to waste in the EU alone. Current disinfection techniques do not seem effective to curb food wastage and at this rate, feeding the future world population will impose challenges. Thus, the overall objective of NanoSurf is to develop a procedure for the decontamination and disinfection of food products and food contact materials using a combination of (1) plasma, (2) ultrasound and (3) nanoparticles with antimicrobial properties. All three individual technologies emerge as effective in disinfecting, decontaminating and preserving food from microbial spoilage. However, based to our knowledge, the integration of plasma, ultrasound and nanoparticles into one technology has never been described for decontamination/disinfection applications. A two step-procedure is envisioned with (a) an initial decontamination with plasma and/or ultrasound technology and then (b) under these conditions generate in situ a low concentration of antimicrobial metallic nanoparticles to deter microbial growth during storage conditions. The method will make use of either pure water as solvent or a gaseous phase, thus eliminating the need of environmentally toxic media, such as, alcohol and electroconductive additives. NanoSurf is expected to have numerous advantages over traditional decontamination/disinfection technologies because the synthesis of nanomaterials Nps will be produced in-situ. The advantage of the proposed technological solution is the ease of implementation, the selection of varied technological schemes for plasma-ultrasound treatment as well as the synthesis of nanoscale metal oxide forms by non-toxic doses in various proportions for different processing times. This novel technology, as demonstrated based on the development of novel prototypes, is expected to find immediate application in the food industry and the medical field.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/897815
Start date: 01-01-2021
End date: 31-12-2022
Total budget - Public funding: 178 320,00 Euro - 178 320,00 Euro
Cordis data

Original description

In the next 50 years, an estimated 10 billion people will require food but microbial spoilage cause more than 50% of all fruits and vegetables to go to waste in the EU alone. Current disinfection techniques do not seem effective to curb food wastage and at this rate, feeding the future world population will impose challenges. Thus, the overall objective of NanoSurf is to develop a procedure for the decontamination and disinfection of food products and food contact materials using a combination of (1) plasma, (2) ultrasound and (3) nanoparticles with antimicrobial properties. All three individual technologies emerge as effective in disinfecting, decontaminating and preserving food from microbial spoilage. However, based to our knowledge, the integration of plasma, ultrasound and nanoparticles into one technology has never been described for decontamination/disinfection applications. A two step-procedure is envisioned with (a) an initial decontamination with plasma and/or ultrasound technology and then (b) under these conditions generate in situ a low concentration of antimicrobial metallic nanoparticles to deter microbial growth during storage conditions. The method will make use of either pure water as solvent or a gaseous phase, thus eliminating the need of environmentally toxic media, such as, alcohol and electroconductive additives. NanoSurf is expected to have numerous advantages over traditional decontamination/disinfection technologies because the synthesis of nanomaterials Nps will be produced in-situ. The advantage of the proposed technological solution is the ease of implementation, the selection of varied technological schemes for plasma-ultrasound treatment as well as the synthesis of nanoscale metal oxide forms by non-toxic doses in various proportions for different processing times. This novel technology, as demonstrated based on the development of novel prototypes, is expected to find immediate application in the food industry and the medical field.

Status

CLOSED

Call topic

MSCA-IF-2019

Update Date

28-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.3. EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions (MSCA)
H2020-EU.1.3.2. Nurturing excellence by means of cross-border and cross-sector mobility
H2020-MSCA-IF-2019
MSCA-IF-2019