LABandFAB | Enabling the scalable and cheap production of efficient and stable organic-based photovoltaic technology realized via printing techniques, for electricity generation

Summary
The reduction of greenhouse emissions is currently acknowledged as a major European objective, and by 2040 a 40% emissions cut is expected, with renewable sources contributing up to 27%. In this respect LAB&FAB aims at developing the fabrication of efficient, cheap and stable organic photovoltaic (OPV) technology printed on flexible substrates, which will be scalable and eventually transferred from a lab-environment to production line.
LAB&FAB action will spread on the two parallel fronts: the pilot-scale on one side, and the lab-scale on the other. At the pilot-scale, LAB&FAB will exploit state-of-the art printed OPV modules to push their efficiency, while doubling their lifetime by the end of the project. Long-term stability tests will be carried out and allow for a complete durability assessment, while technological improvements will be introduced to target the efficiency/lifetime goals, as specific weaknesses will be spotted. At the lab scale, novel and efficient materials will be thoroughly explored and characterised and optimised printing protocols will be established for their subsequent integration into solar cells large-area production. Degradation tests will also help assess the materials/devices performance, and at the end of fellowship new efficiency/lifetime benchmarks for such scaled OPV cells will be set.
The Experienced Researcher (ER) acquired a solid background on physics of OPV, and thanks to this fellowship she will capitalise and expand it toward more technologically-based challenges related to its technology upscaling. The Host Institution ENI (Italy) is embracing a full transition toward a low-carbon scenario, and thanks to the multidisciplinary aspects of LAB&FAB (covering physics, device engineering, and intellectual property management just to name a few) the Host will be able to offer the ER the perfect environment for future growth and advancement of her professional career in the non-academic sector.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/838179
Start date: 04-01-2021
End date: 03-01-2023
Total budget - Public funding: 171 473,28 Euro - 171 473,00 Euro
Cordis data

Original description

The reduction of greenhouse emissions is currently acknowledged as a major European objective, and by 2040 a 40% emissions cut is expected, with renewable sources contributing up to 27%. In this respect LAB&FAB aims at developing the fabrication of efficient, cheap and stable organic photovoltaic (OPV) technology printed on flexible substrates, which will be scalable and eventually transferred from a lab-environment to production line.
LAB&FAB action will spread on the two parallel fronts: the pilot-scale on one side, and the lab-scale on the other. At the pilot-scale, LAB&FAB will exploit state-of-the art printed OPV modules to push their efficiency, while doubling their lifetime by the end of the project. Long-term stability tests will be carried out and allow for a complete durability assessment, while technological improvements will be introduced to target the efficiency/lifetime goals, as specific weaknesses will be spotted. At the lab scale, novel and efficient materials will be thoroughly explored and characterised and optimised printing protocols will be established for their subsequent integration into solar cells large-area production. Degradation tests will also help assess the materials/devices performance, and at the end of fellowship new efficiency/lifetime benchmarks for such scaled OPV cells will be set.
The Experienced Researcher (ER) acquired a solid background on physics of OPV, and thanks to this fellowship she will capitalise and expand it toward more technologically-based challenges related to its technology upscaling. The Host Institution ENI (Italy) is embracing a full transition toward a low-carbon scenario, and thanks to the multidisciplinary aspects of LAB&FAB (covering physics, device engineering, and intellectual property management just to name a few) the Host will be able to offer the ER the perfect environment for future growth and advancement of her professional career in the non-academic sector.

Status

TERMINATED

Call topic

MSCA-IF-2018

Update Date

28-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.3. EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions (MSCA)
H2020-EU.1.3.2. Nurturing excellence by means of cross-border and cross-sector mobility
H2020-MSCA-IF-2018
MSCA-IF-2018