Summary
With ca. 50.000 casualties per year and 330 billion USD of damage in this century, earthquakes are among the biggest geohazards on Earth. Earthquakes are natural, often human-induced, phenomena in which a vast amount of elastic strain energy stored in rocks is suddenly released. A large amount of research has been performed to investigate fault mechanisms during earthquakes whereas much less has been done to constrain the chemical-physical processes of fluid-rock interaction during the seismic cycle and how these processes enhance the healing of fault zones, the storage of elastic strain energy in the crust and the nucleation of new earthquakes.
The project FRICTION, building on the exciting results from a previous ERC project aimed to understand earthquakes mechanics from rupture nucleation and propagation to arrest, aims at investigating the feedback between seismic faulting, fluid-rock interaction, and tectonic loading in the processes of healing of fault zones and nucleation of earthquakes in the continental crust. FRICTION is innovative since it tackles a scientific topic which was so far overlooked with a multiscale interdisciplinary approach combining: high-detailed field structural characterization of exhumed ancient seismogenic fault zones, unprecedented rock deformation and fluid-rock interaction experiments under realistic hydrothermal and seismic conditions, both coupled with microstructural-petrophysical and chemical characterization of natural and experimental fault rocks.
This integrated approach will lead to building a wealth of novel datasets to quantify the strength, friction constitutive properties, and sliding behavior of faults at hydrothermal conditions in the continental crust. The research will be conducted at Università degli Studi di Padova, where the joint assets of an experienced supervisor and unique, ground-breaking equipment will guarantee the successful progress of the research and my professional growth as an independent researcher.
The project FRICTION, building on the exciting results from a previous ERC project aimed to understand earthquakes mechanics from rupture nucleation and propagation to arrest, aims at investigating the feedback between seismic faulting, fluid-rock interaction, and tectonic loading in the processes of healing of fault zones and nucleation of earthquakes in the continental crust. FRICTION is innovative since it tackles a scientific topic which was so far overlooked with a multiscale interdisciplinary approach combining: high-detailed field structural characterization of exhumed ancient seismogenic fault zones, unprecedented rock deformation and fluid-rock interaction experiments under realistic hydrothermal and seismic conditions, both coupled with microstructural-petrophysical and chemical characterization of natural and experimental fault rocks.
This integrated approach will lead to building a wealth of novel datasets to quantify the strength, friction constitutive properties, and sliding behavior of faults at hydrothermal conditions in the continental crust. The research will be conducted at Università degli Studi di Padova, where the joint assets of an experienced supervisor and unique, ground-breaking equipment will guarantee the successful progress of the research and my professional growth as an independent researcher.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: | https://cordis.europa.eu/project/id/896346 |
Start date: | 01-08-2020 |
End date: | 28-01-2023 |
Total budget - Public funding: | 171 473,28 Euro - 171 473,00 Euro |
Cordis data
Original description
With ca. 50.000 casualties per year and 330 billion USD of damage in this century, earthquakes are among the biggest geohazards on Earth. Earthquakes are natural, often human-induced, phenomena in which a vast amount of elastic strain energy stored in rocks is suddenly released. A large amount of research has been performed to investigate fault mechanisms during earthquakes whereas much less has been done to constrain the chemical-physical processes of fluid-rock interaction during the seismic cycle and how these processes enhance the healing of fault zones, the storage of elastic strain energy in the crust and the nucleation of new earthquakes.The project FRICTION, building on the exciting results from a previous ERC project aimed to understand earthquakes mechanics from rupture nucleation and propagation to arrest, aims at investigating the feedback between seismic faulting, fluid-rock interaction, and tectonic loading in the processes of healing of fault zones and nucleation of earthquakes in the continental crust. FRICTION is innovative since it tackles a scientific topic which was so far overlooked with a multiscale interdisciplinary approach combining: high-detailed field structural characterization of exhumed ancient seismogenic fault zones, unprecedented rock deformation and fluid-rock interaction experiments under realistic hydrothermal and seismic conditions, both coupled with microstructural-petrophysical and chemical characterization of natural and experimental fault rocks.
This integrated approach will lead to building a wealth of novel datasets to quantify the strength, friction constitutive properties, and sliding behavior of faults at hydrothermal conditions in the continental crust. The research will be conducted at Università degli Studi di Padova, where the joint assets of an experienced supervisor and unique, ground-breaking equipment will guarantee the successful progress of the research and my professional growth as an independent researcher.
Status
CLOSEDCall topic
MSCA-IF-2019Update Date
28-04-2024
Images
No images available.
Geographical location(s)