RANPOFIL | Science and applications of random polymer fiber lasers

Summary
As a new type of light source, random lasers have attracted many attentions. The non-directional and high threshold characters of the traditional RL systems have largely limited their application. The effect of one-dimensional confinement on the lasing properties of a classical random laser system has obtained, bringing about the birth of random fiber lasers with low threshold and directionality based on the stimulated emission in the disorder system. Laterly, the new random fiber laser, based on a Rayleigh scattering amplified via the Raman effect in the silica optical fiber without a cavity formed only by a random distributed feedback, have been reported. However, the backscattering coefficient of silica optical fiber is very low, which induces high pump threshold and long fiber length. Interestingly, optical fibers with two merits come into my research points in the random fiber lasers: (1) high Rayleigh backscattering coefficient; (2) high negative thermo-optical coefficient fiber. Therefore, the new polymer fiber random laser will be greatly to enhance the efficiency and tunable of random lasing. These studies will provide scientific and technical evidences and pave the way for better random fiber laser.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/744817
Start date: 10-08-2017
End date: 09-08-2019
Total budget - Public funding: 195 454,80 Euro - 195 454,00 Euro
Cordis data

Original description

As a new type of light source, random lasers have attracted many attentions. The non-directional and high threshold characters of the traditional RL systems have largely limited their application. The effect of one-dimensional confinement on the lasing properties of a classical random laser system has obtained, bringing about the birth of random fiber lasers with low threshold and directionality based on the stimulated emission in the disorder system. Laterly, the new random fiber laser, based on a Rayleigh scattering amplified via the Raman effect in the silica optical fiber without a cavity formed only by a random distributed feedback, have been reported. However, the backscattering coefficient of silica optical fiber is very low, which induces high pump threshold and long fiber length. Interestingly, optical fibers with two merits come into my research points in the random fiber lasers: (1) high Rayleigh backscattering coefficient; (2) high negative thermo-optical coefficient fiber. Therefore, the new polymer fiber random laser will be greatly to enhance the efficiency and tunable of random lasing. These studies will provide scientific and technical evidences and pave the way for better random fiber laser.

Status

CLOSED

Call topic

MSCA-IF-2016

Update Date

28-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.3. EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions (MSCA)
H2020-EU.1.3.2. Nurturing excellence by means of cross-border and cross-sector mobility
H2020-MSCA-IF-2016
MSCA-IF-2016