Summary
Geological materials are used in significant quantities for construction purposes, structurally and for cladding, but are subject to damage, deformation and deterioration through natural weathering processes in combination with the stress state induced in service. As a consequence, structural performance can be reduced, durability is compromised and there may be aesthetic or heritage issues with regard to preservation of the original structural form. Currently, such issues are addressed either through initial overdesign, implementation of maintenance programmes, or both. The proposal seeks to explore the potential for providing such materials with the ability to self-heal – to automatically respond to damage or deterioration, instigating a healing process that restores or even enhances the desirable structural or aesthetic properties. Such technology will take inspiration from, and work in parallel with, current research into self-healing in cementitious, polymeric and other engineering materials.
Previously, biological methods of treatment of geological materials have been employed, e.g. cementation through bacterial mineralisation of calcite, to enhance structural properties as well as to protect and conserve valuable structures. Similar technologies have been employed in the self-healing of cementitious materials. It is therefore envisaged, for the first time, to introduce the concept of biological self-healing to geological materials, combining the Fellow's expertise in geo-material conservation with that of the Host in self-healing materials and biomineralisation. A major part of this work is to identify and assess suitable healing mechanisms, and methods of triggering them, for the particular environments under consideration. Ultimately it is hoped that the technology would be applicable to both new and existing engineered structures comprising geological materials.
Previously, biological methods of treatment of geological materials have been employed, e.g. cementation through bacterial mineralisation of calcite, to enhance structural properties as well as to protect and conserve valuable structures. Similar technologies have been employed in the self-healing of cementitious materials. It is therefore envisaged, for the first time, to introduce the concept of biological self-healing to geological materials, combining the Fellow's expertise in geo-material conservation with that of the Host in self-healing materials and biomineralisation. A major part of this work is to identify and assess suitable healing mechanisms, and methods of triggering them, for the particular environments under consideration. Ultimately it is hoped that the technology would be applicable to both new and existing engineered structures comprising geological materials.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: | https://cordis.europa.eu/project/id/745891 |
Start date: | 22-01-2018 |
End date: | 21-01-2020 |
Total budget - Public funding: | 183 454,80 Euro - 183 454,00 Euro |
Cordis data
Original description
Geological materials are used in significant quantities for construction purposes, structurally and for cladding, but are subject to damage, deformation and deterioration through natural weathering processes in combination with the stress state induced in service. As a consequence, structural performance can be reduced, durability is compromised and there may be aesthetic or heritage issues with regard to preservation of the original structural form. Currently, such issues are addressed either through initial overdesign, implementation of maintenance programmes, or both. The proposal seeks to explore the potential for providing such materials with the ability to self-heal – to automatically respond to damage or deterioration, instigating a healing process that restores or even enhances the desirable structural or aesthetic properties. Such technology will take inspiration from, and work in parallel with, current research into self-healing in cementitious, polymeric and other engineering materials.Previously, biological methods of treatment of geological materials have been employed, e.g. cementation through bacterial mineralisation of calcite, to enhance structural properties as well as to protect and conserve valuable structures. Similar technologies have been employed in the self-healing of cementitious materials. It is therefore envisaged, for the first time, to introduce the concept of biological self-healing to geological materials, combining the Fellow's expertise in geo-material conservation with that of the Host in self-healing materials and biomineralisation. A major part of this work is to identify and assess suitable healing mechanisms, and methods of triggering them, for the particular environments under consideration. Ultimately it is hoped that the technology would be applicable to both new and existing engineered structures comprising geological materials.
Status
CLOSEDCall topic
MSCA-IF-2016Update Date
28-04-2024
Images
No images available.
Geographical location(s)