TyphiNET | A global multi-institutional Typhoid fever genomic surveillance network to improve global public health outcomes

Summary
Globally there are ~20 million typhoid fever cases per year, resulting in ~200,000 deaths from infection with the causative agent, Salmonella Typhi. Antimicrobial therapy is the mainstay of typhoid fever control, and genomic epidemiology studies have revealed that drug resistance emerging in one country can rapidly spread to other neighbouring countries and intercontinentally. Genomic and phenotypic surveillance for typhoid and antimicrobial resistance (AMR) is therefore very important for disease control. TyphiNET aims to develop innovative approaches to bring the benefits of typhoid genomic surveillance to LMICs where the disease is endemic through three main goals: (1) to unlock data from travel-associated typhoid cases in high income countries that are adopting genomics for routine Salmonella surveillance (2) to unlock data from project-based genomic surveillance in endemic areas (beginning with five key collaborative projects across Asia and Africa) and (3) develop an open access publicly available platform for synergising, visualising, and disseminating large scale genomic data sourced from sentinel and endemic area surveillance. Research questions will include inferring genomic epidemiology parameters (prevalence of strain types, resistance to specific antimicrobials, and regional transmission patterns) for different countries/regions using data from sentinel surveillance and from endemic area surveillance; comparison of these to demonstrate the utility of sentinel traveller surveillance for predicting endemic area disease patterns; and comparison of disease dynamics between regions. Outcomes will inform management of both endemic disease in LMICs and travel-associated cases elsewhere, including providing region- and country-specific data to inform empirical antimicrobial choice; and will reveal coverage gaps in endemic area surveillance to be targeted in future studies.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/845681
Start date: 01-04-2020
End date: 31-03-2022
Total budget - Public funding: 212 933,76 Euro - 212 933,00 Euro
Cordis data

Original description

Globally there are ~20 million typhoid fever cases per year, resulting in ~200,000 deaths from infection with the causative agent, Salmonella Typhi. Antimicrobial therapy is the mainstay of typhoid fever control, and genomic epidemiology studies have revealed that drug resistance emerging in one country can rapidly spread to other neighbouring countries and intercontinentally. Genomic and phenotypic surveillance for typhoid and antimicrobial resistance (AMR) is therefore very important for disease control. TyphiNET aims to develop innovative approaches to bring the benefits of typhoid genomic surveillance to LMICs where the disease is endemic through three main goals: (1) to unlock data from travel-associated typhoid cases in high income countries that are adopting genomics for routine Salmonella surveillance (2) to unlock data from project-based genomic surveillance in endemic areas (beginning with five key collaborative projects across Asia and Africa) and (3) develop an open access publicly available platform for synergising, visualising, and disseminating large scale genomic data sourced from sentinel and endemic area surveillance. Research questions will include inferring genomic epidemiology parameters (prevalence of strain types, resistance to specific antimicrobials, and regional transmission patterns) for different countries/regions using data from sentinel surveillance and from endemic area surveillance; comparison of these to demonstrate the utility of sentinel traveller surveillance for predicting endemic area disease patterns; and comparison of disease dynamics between regions. Outcomes will inform management of both endemic disease in LMICs and travel-associated cases elsewhere, including providing region- and country-specific data to inform empirical antimicrobial choice; and will reveal coverage gaps in endemic area surveillance to be targeted in future studies.

Status

CLOSED

Call topic

MSCA-IF-2018

Update Date

28-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.3. EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions (MSCA)
H2020-EU.1.3.2. Nurturing excellence by means of cross-border and cross-sector mobility
H2020-MSCA-IF-2018
MSCA-IF-2018