AGAGAP | Algebraic Group Actions in Geometry, Arithmetic, and Physics

Summary
"Geometry, arithmetic, and quantum physics historically have had many points of intersection. This project will use recent techniques in algebraic group actions, especially those of Kirwan, to address problems of overlapping interest to distinct research groups at the University of Oxford – Algebraic Geometry, Number Theory, Mathematical Physics, and the Centre for Quantum Mathematics and Computation.

Consider the following long-standing, a priori unrelated, questions. What is the minimal degree curve that passes through n points in general position in the plane (Nagata conjecture)? What is the growth rate of the number of integer lattice points in a variety (for us, universal torsor over a Fano variety) with respect to a height function (Manin conjecture)? How can one work with quantum entanglements of different qualitative character and associated entropies in a rigorous yet
experimentally friendly way?

These open questions turn out to admit a common source, at least in a large class of problems of interest. The crucial
ingredient is a suitable ""homotopic replacement for a universal torsor"" -- arising, in nice cases, from a key difference with topology, since in algebraic geometry algebraic affine line bundles needn't be vector bundles -- that often allows one to reduce to studying a simpler problem in group actions attached to an affine space rather than to a complicated variety or even more complicated universal torsor."
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/742052
Start date: 17-08-2017
End date: 16-08-2019
Total budget - Public funding: 195 454,80 Euro - 195 454,00 Euro
Cordis data

Original description

"Geometry, arithmetic, and quantum physics historically have had many points of intersection. This project will use recent techniques in algebraic group actions, especially those of Kirwan, to address problems of overlapping interest to distinct research groups at the University of Oxford – Algebraic Geometry, Number Theory, Mathematical Physics, and the Centre for Quantum Mathematics and Computation.

Consider the following long-standing, a priori unrelated, questions. What is the minimal degree curve that passes through n points in general position in the plane (Nagata conjecture)? What is the growth rate of the number of integer lattice points in a variety (for us, universal torsor over a Fano variety) with respect to a height function (Manin conjecture)? How can one work with quantum entanglements of different qualitative character and associated entropies in a rigorous yet
experimentally friendly way?

These open questions turn out to admit a common source, at least in a large class of problems of interest. The crucial
ingredient is a suitable ""homotopic replacement for a universal torsor"" -- arising, in nice cases, from a key difference with topology, since in algebraic geometry algebraic affine line bundles needn't be vector bundles -- that often allows one to reduce to studying a simpler problem in group actions attached to an affine space rather than to a complicated variety or even more complicated universal torsor."

Status

CLOSED

Call topic

MSCA-IF-2016

Update Date

28-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.3. EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions (MSCA)
H2020-EU.1.3.2. Nurturing excellence by means of cross-border and cross-sector mobility
H2020-MSCA-IF-2016
MSCA-IF-2016