AnalysisAtInfinity | Analysis at Infinity: Integral Equations, Limit Operators and Beyond

Summary
The main objective of this project is to investigate fundamental properties of singular integral operators and apply our findings to concrete problems in mathematical physics and engineering. Our approach is to combine newly developed limit operator methods with Riemann-Hilbert analysis. Our plan is divided into three parts. In the first part we develop the limit operator fundamentals. We use the existing limit operator theory and transfer the methods to integral operators. In the second part we combine limit operator theory with Riemann-Hilbert analysis to obtain fundamental properties of Toeplitz operators like boundedness and Fredholmness. We will also use this combination to find double-scaling limits of Toeplitz determinants, which are used, for instance, to understand spontaneous magnetisation in the 2D Ising model. In the third part we will apply our results to concrete integral equations, e.g. the double layer potential. Our ultimate goal will be to resolve a long-standing spectral radius problem. The project combines the expertise of the Applicant (limit operator theory) very well with the expertise of the Supervisor (Riemann-Hilbert analysis) and the Host's analysis group (integral equations, mathematical physics). By combining these fields in a novel approach, this project opens up new research possibilities and greatly contributes to European research excellence in analysis and its applications. The results will be published in high-level journals and presented at international seminars and conferences. A workshop on the proposed topics will be organised at the Host university and a blog will keep everyone updated on the progress. The scientific research is accompanied by teaching, supervising students and workshops on complementary skills. This ensures that the Applicant will become a versatile and mature mathematician by the end of the project, who is capable of leading an international research group and acquiring a permanent position in academia.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/844451
Start date: 01-06-2019
End date: 31-05-2021
Total budget - Public funding: 212 933,76 Euro - 212 933,00 Euro
Cordis data

Original description

The main objective of this project is to investigate fundamental properties of singular integral operators and apply our findings to concrete problems in mathematical physics and engineering. Our approach is to combine newly developed limit operator methods with Riemann-Hilbert analysis. Our plan is divided into three parts. In the first part we develop the limit operator fundamentals. We use the existing limit operator theory and transfer the methods to integral operators. In the second part we combine limit operator theory with Riemann-Hilbert analysis to obtain fundamental properties of Toeplitz operators like boundedness and Fredholmness. We will also use this combination to find double-scaling limits of Toeplitz determinants, which are used, for instance, to understand spontaneous magnetisation in the 2D Ising model. In the third part we will apply our results to concrete integral equations, e.g. the double layer potential. Our ultimate goal will be to resolve a long-standing spectral radius problem. The project combines the expertise of the Applicant (limit operator theory) very well with the expertise of the Supervisor (Riemann-Hilbert analysis) and the Host's analysis group (integral equations, mathematical physics). By combining these fields in a novel approach, this project opens up new research possibilities and greatly contributes to European research excellence in analysis and its applications. The results will be published in high-level journals and presented at international seminars and conferences. A workshop on the proposed topics will be organised at the Host university and a blog will keep everyone updated on the progress. The scientific research is accompanied by teaching, supervising students and workshops on complementary skills. This ensures that the Applicant will become a versatile and mature mathematician by the end of the project, who is capable of leading an international research group and acquiring a permanent position in academia.

Status

CLOSED

Call topic

MSCA-IF-2018

Update Date

28-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.3. EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions (MSCA)
H2020-EU.1.3.2. Nurturing excellence by means of cross-border and cross-sector mobility
H2020-MSCA-IF-2018
MSCA-IF-2018