Summary
Abiotic and biotic challenges pose serious risks to plant growth and crop production world-wide. The plant hormone Jasmonate (JA) is essential to protect plants against insect herbivory, mechanical wounding and necrotrophic pathogens. Upon these challenges, JA hormone levels increase and induce defense responses while stunting growth. Hence, understanding how plants balance growth-defense trade-offs during environmental stresses represents a tremendous opportunity to improve plant yield and meet the global need for increased food production. Through an extensive genetic approach in the model plant Arabidopsis thaliana, the host lab has identified PLEIOTROPIC REGULATORY LOCUS 1 (PRL1) as new putative regulator of the JA pathway. PRL1 is also known for its role in sugar signalling and metabolism, representing a probable integration node for balancing growth during stress responses. This project thus aims to characterize the role of PRL1 in activating the JA pathway and uncover how are sugar and defense signalling integrated during insect and fungal attacks. Specifically, I will use state-of-the-art cell biology, biochemistry and molecular biology approaches available at the host institute to answer the following questions: 1. How does PRL1 regulate JA responses? 2. How does PRL1 impact cell-type specific JA-mediated defense strategies? 3. How are PRL1- and JA-signalling pathways integrated? 4. What is the role of PRL1 in plant defense responses against insect herbivory and fungal pathogens? In addition to increasing our fundamental understanding of plant-pathogen interactions and activation of hormonal pathways, this ambitious project will inevitably provide novel targets and strategies to improve crop adaptability and secure means for stabilizing future food security.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: | https://cordis.europa.eu/project/id/895792 |
Start date: | 01-04-2020 |
End date: | 31-03-2022 |
Total budget - Public funding: | 174 806,40 Euro - 174 806,00 Euro |
Cordis data
Original description
Abiotic and biotic challenges pose serious risks to plant growth and crop production world-wide. The plant hormone Jasmonate (JA) is essential to protect plants against insect herbivory, mechanical wounding and necrotrophic pathogens. Upon these challenges, JA hormone levels increase and induce defense responses while stunting growth. Hence, understanding how plants balance growth-defense trade-offs during environmental stresses represents a tremendous opportunity to improve plant yield and meet the global need for increased food production. Through an extensive genetic approach in the model plant Arabidopsis thaliana, the host lab has identified PLEIOTROPIC REGULATORY LOCUS 1 (PRL1) as new putative regulator of the JA pathway. PRL1 is also known for its role in sugar signalling and metabolism, representing a probable integration node for balancing growth during stress responses. This project thus aims to characterize the role of PRL1 in activating the JA pathway and uncover how are sugar and defense signalling integrated during insect and fungal attacks. Specifically, I will use state-of-the-art cell biology, biochemistry and molecular biology approaches available at the host institute to answer the following questions: 1. How does PRL1 regulate JA responses? 2. How does PRL1 impact cell-type specific JA-mediated defense strategies? 3. How are PRL1- and JA-signalling pathways integrated? 4. What is the role of PRL1 in plant defense responses against insect herbivory and fungal pathogens? In addition to increasing our fundamental understanding of plant-pathogen interactions and activation of hormonal pathways, this ambitious project will inevitably provide novel targets and strategies to improve crop adaptability and secure means for stabilizing future food security.Status
CLOSEDCall topic
MSCA-IF-2019Update Date
28-04-2024
Images
No images available.
Geographical location(s)